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Chapter 1

Computing should be
Sensible

If you belleve that computing is fun, interesting, and
useful then this book is for you. If you think it is
a very serious pursuit that should be followed with
§reat self-discipline according to laid down rules,
hen 1t may not be so suitable. In writing it I have
attempted 'to share with the reader the pleasure I
have derived from controlling my PCW from machine
code programs. Apart from understanding rudimentary
BASIC and having 'a healthy curiosity, you will need
no other qualifications, even though all aspects of
the machine's hardware are dealt with: as the man
sald, "Everything is simple once you know about it."

I have made Chapters 2 to 5 an introduction to
machine code (for which I will often use the
abreviation ‘m/c') for those who have not met 1t
before, though I have purposely kept this section
short to leave more room for describing how to
control discs, the screen, and the printer, which is
the real purpose of the book.

In referring to the Amstrad manuals I have given the
page numbers in the books sugglied with the '8256°
and '8512' first, followed by the equivalent for the
‘9512' 1n square brackets, if any.

But, why bother with machine code at all? Well,
there are three reasons: it is fast, it uses very
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little memory, and it gives the programmer excellent
control of the computer. Indeed, of all the available
ways of programming the Pcw, m/c runs the
fastest, uses the least memory and gives the maximum
level of control.

And even if 1t 1s a 1little tedious to write, well,
that's no price when set against the advantages.

Secondly, Just a word about jargon. Jargon in private
between consenting participants is fine. It is no
more than a kind of verbal shorthand that enables
people to communicate more freely; and who could
object to that? However, in comguting it does get
over-used and keeping that in check is a duty we owe
to each other.

Not that jargonism is the sole prerogative of the
world of computers; it seems to occur every field
of activity that has ever had a need for special
words to describe its own pecullar objects and
actions, though invariably that need has long been
overlain by the tendency to wish to be seen to be a
guy who knows what all the initials mean.

If a magazine or a book, which has a professional
duty to communicate with 1ts public, fogs you with
pages of rubbish made up by ex—i’entagon stores
clerks then you should complain to the publishers.
For as long as computerites are allowed to self-
stimulate in this way they will do so. It probably
makes them feel better. My name for it s
w-language (in which 'w' stands for a four-letter
word ending in ‘'k"). In all cases 1t can be elther
ignored or replaced by a simple English word or
phrase with the effect of improving the information
content of the text. Maybe it is time for us to
oblige communicators to ensure that simple English
phrases get a wider use.

I have honestly tried to exclude all w-language and
jJargon—-berkery from this volume. If 1t furns out
that I've failed, well, I will be duly humbled. Either
;Jay, I sincerly hope it tells you what you wanted to
Now.



Chapter 2
The Basis of Computing

The Computer

As far as a programmer is concerned the computer
consists of a ‘'memory' and a 'processor'. The PCW's
Brocessor 1s the Z80, which 1s made by the Zilog
orporation. It takes data from the memory, operates
on it (le. processes it), and then puts it back into
memory where it 1s avallable to do something useful
when required. Alternatively the processor can take
In new data (from the keyboard, say) or convert
existing data into the screen display, or into
symbols for feeding to the printer.

Bits and Bytes

The absoclutely smallest plece of data (e. of
information) that the computer can deal with 1is
called a bit. A bit can be either switched on or
switched off. A switched-on bit is said to be set,
as onoseg to a switched-off bit which 1s said to be

rese set (on) bit corresponds to the number 1,
and a reset (off) bit corresponds to zero. The
arrangement of set and reset is as follows
SET = on = 1
RESET = off = O
The PCW handles all its bits in groups of eight. A
group of eight bits 1is called a byte. The

combination of its set and reset bits in a byte
determine5 the value of the byte. If all the bits
have a value of zero, then the value of the byte will
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be zero. If some of them have a value of 1, then
the value of the byte will be increased accordingly.

The bits have increasing rank from right to left.
This corres?onds to the way we write the numerals in
conventional arithmetic; the figure on the extreme
ri§ht glves the number of units and figures to the
left of it have 1ncreasin§1y reater significance
(tens, hundreds, thousands, ften-thousands and so on).
So it 1is with bits except that they can't represent
numbers up to 9, they can represent only 0 or 1.

The bit on the extreme right 1is called “the least
significant bit", and the one on the extreme left is
called "the most significant bit".

Conventional arithmetic has ten numerals ("0" to “9"™
ana we count in parcels of ten. (This is called
counting ‘'to the base 10') I can specify increas

quantitles up to 9 Jjust by picking the ‘next higher
numeral. But, beyond 9, because there aren't any
more numerals to pick from, I revert back to =zero
again, but I indicate that ten has been reached b
writing a "“1" to the left of the zero. After that

can keep increasing the units (the rightmost column)
by picking higher and higher numerals until "9* has
again been reached. I then have to revert the units
to zero again, but I increase the tens to “2" to show
that twenzy has been reached, and this can be
repeated ad iInf to give numbers as large as we like.

Our normal system of counting 1is usually called the
Decimal System' <(because ‘deci-‘ means “a tenth™.
Purists usually suck their teeth and wag their heads
at this, correctly pointing to the linguistic merits
of “denary" over “decimal”.” (Denary‘' means “of ten".)
They are right of course, and denary is definitely in
so 1t is as well to be familiar with it. It Is a
feature of decimal (sorry, denary) arithmetic that a
numeral acquires TEN TIMES its previous value if it
is moved one column to the left.

Binary Arithmetic

The arithmetic that applies to counting with bits is
called ‘'Binary Arithmetic’' because only the two
numerals “O" and "1" are available, and ‘binary’ means
"naving two parts". Counting in binary is fhe same
as counting in denary except that we run out of
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numerals much sooner; after the first increment in
fact (‘Increment’ means "add 1 to"). Starting at zero,
the process of counting goes like this:

Start at zero: 00000000 (=
Add 1 to give: 00000001 (=

Because we have now exhausted our list of numerals,
we must revert the rightmost column to 2zero and
increment the column to Its left:

0)
1

This gives: 00000010 (=2)
Add another 1: 00000011 (=3)
Follow the rule: 00000100 (=4)
Etc 00000101 (=5)
Etc 00000110 (=6)
Etc 00000111 (=7)
Etc 00001000 (=8)
Etc 00001001 (=9)

You will notice that, analagously with decimal, a *1"
acquires TWICE its previous value if 1t is moved one
column to the left. This gives rise to the following
important sequence in which the values are all powers

of two.
00000001 = 1 00010000 = 16
00000010 = 2 00100000 = 32
00000100 = 4 01000000 = 64
00001000 = 8 10000000 = 128

If you add all these numbers up you will find that
11111111 in binar‘{ is equal to 255 in decimal, and
hence 255 1is the highest value that can be put into
an 8-bit byte. NotIce that the even binary numbers
have the least significant bit reset, whereas the odd
ones have it set.

If we were unable to compute with numbers larger
than 255 it's not 1likely that we'd bother to compute
at all, but, as with the decimal system, there is no
limit to the number of digits that may be used so a
number of any size can be represented in binary,
though for technical and economic reasons the Z80
never considers more than sixteen bits at a time <(and
even then 1t takes two bytes at the cherrg). The
additional 8 bits make up what is called the high
byte, and the original 8 are referred to as, not
surprisingly, the low byte.
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Using 16 bits

Suppose that in our counting we have reached 255.
What happens if we add another 1 7 Well, if we
have only one byte it will be reset to zero and the
whole of our count will be lost, but with two bytes
the count may proceed as if the two formed a single
16-bit number. All that is necessary is that any
overflow from the low byte should be fed into the
high byte and be preserved there. As follows:

H.Byte L.Byte
The count has reached 255: 00000000 11111111

Add another 1: 00000001 00000000
And another: 00000001 00000001
Etc 00000001 00000010
Etc 00000001 00000011

Notice that the high byte will not be incremented
again until the low byte has again reached 255 and
then another 1 1is added. That Is the same as saying
that the high byte counts, not 1's, but 256's, Hence
the value ot the high byte can be read as if it were
an ordinary byte but with the result multiplied by
256. This gives us an easy way to calculate the
maximum value that 16 bits can hold. The high byte
can count up to 255 x 256 (ie. 65280), and the low
bKte may count a further 255. The total "1is
therefore 65535.

Numbering the bits

In computing the lowest number is considered to be O,
not 1. For this reason the least significant bit is
called "bit N2 0%, the one on its left is called "bit
N2 1", and so on, uB to the most significant bit
which is called ®"bit N2 7%, This is logical, but it
ives rise to the ap_})arent anomaly thal the eighth
it is called "bit N2 7*!

This can be confusing, but I suppose computerites
will blame the confusion onto conversational speech
for counting illogically not from the lowest number,
but from only the second lowest, ie. from 1! The
naming sequence is continued through the high byte,
its least significant bit being called “bit N2 8%, ‘and
its most significant bit being called "bit N2 157,
In defence of the computerites, it is interesting that
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the bit numbers do correspond to the power of 2 that
gives the wvalue of each bit, as shown 1in the
ollowing table:

Bit values

bit N2 O has a value of 1, which equals 2°
bit N2 1 has a value of 2, which equals 2'
bit N© 2 has a value of 4, which equals 2=
bit N@ 3 has a value of 8, which equals 2%

etc.,, up to . . .
bit N¢ 15 has a value 32768, which equals 2'%

Knowing that the values of all set bits are powers
of 2, you may be interested to compute their
individual values up to bit N2 15, and obtain a check
on the 16-bit tota iven earlier. Also notice that
an 1individual bit value 1s always 1 more than the
sum of all the bits to its right. For example bit N
’{ h18257a value of 128, and the sum of bit N2s O to 6
s .

Negative numbers

With only 16 bits to work with, and each able to be
only O or 1, how can we indicate that a number is
less than zero?

Well to do so we have to reserve one of the bits as
a 'flag' to indicate the number's sign. If the flag
1s ‘'raised' (le. if the sign-bit is set) then this
indicates that the number is negative, and 1if the
flag is 'down' (ie. if the sign-bit 1is reset) then we
will take it to be positive. The sign-bit is
invariably the most significant bit (bit N2 7 for 1-
byte numbers, or bit N¢ 15 for 2-byte numbers).

Obviously the sign bit can't sometimes be used to
indicate ‘'a value of 128' and at other times to
indicate ‘'this number 1s negative' because then how
could anyone distinguish between -128 and +128 ?

If we want it to be a sign flag we must make this
clear at the start, and we must accept the penalt
that 1-byte numbers can then be no larger than 12
(because  bit N27 1is reserved) and that 2-byte
numbers can be no larger than 32767 (because bit N2
15 1is reserved). Naturally in 2-byte numbers you
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wouldn't reserve both bit N 7 and bit N2 15; only
one is necessary. Calculating with negative numbers
is explained in more detail in Appendix 3.

Large and Small Numbers

Precise calculation with very large numbers is
perhaps the hallmark of the computer. These are
dealt with in a way that is quite unlike the one I
have described so” far. First the numbers are
converted to their 'floating’l point forms® (which
require 5 bytes each) and en the calculation is
made.

Floatin peint forms are reminiscent of the
logarithmic form that was common before electronics
took the drudgery out of calculation, but it might be
as well for you not to wrestle with them yei; not
many people do.

Conveniently, the very small numbers that are used
frequently in “scient{fic and technical calculations
can be handled in their floating point forms too.

A second way of mak accurate calculations with
large numbers 1is called 'Binary Coded Decimal'. It is
used pricipally in accountancy where it is important
not to lose an odd digit or "two, and the Z80 has a
i;pttecial facility devoted to it. We will look at it
ater.

Binary Multiplication and Division

These two operations are carried out as in decimal.
Suppose I want to multiply 36 by 5. In binary these
numbers are 00100100 = and ~ 00000101 and the
multiplication goes :

36 00100100
x 5

+ 0010010000
result 10110100 = 180

And to divide 188 by 5, ie. 10111100 by 00000101:
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00100101 result = 37

remainder 1 = 3

The alphabet

Because it finds numbers easy to handle, the computer
ado%ts the simple expedient of giving each létter a
number and then moves these about as if they were
letters, and the more or less universally accepted
set of numbers which represent the Iletters, " the
numerals, the punctuation signs, and other useful
symbols such as $, £, &, =, ®, etc., are called the

IT Codes. ASCII is an acronym for the American
something or other connecte with Information
Interchange. The codes are listed on pages 113 to
118 [547 to 554] of the Amstrad manual.

A sequence of letters, numerals or similar symbols

(ie. non—numbers) is called a string. Hence a string
could be a single letter, a word, a sentence, a
paragraph, a message, a set of numerals, or any

other part or whole of a text item. (Note that a
string of numerals is not a number; ie. you cannot
calculate with 1it.) A sequence of ASCII codes may
also be called a string. The end of a string is
signalled by a stiring-end marker (which is called a
‘delimiter' "in w-language), which by convention is
often the dollar sign™ ($J, or i1ts ASCII code.

The Hexadecimal System

If I hadn't told you, I bet you wouln't have guessed
that there was any connection between 255 in decimal
and 11111111 in binary. Still less does there
apgear to be a special significance to 65535; an
arbitrary looking number if ever I saw one.

From the early days it was realised that the ‘base-
10* (decimal) 'is not a convenient base in which to
express numerical values when dealing with electronic
calculations. This is because ten is not a power of
2, but 2 is unavoidable because there are just two
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fundamental electrical states: ‘on' and 'off‘; ‘set' and
‘reset’.

Counting to bases which are powers of two, ie to the
'‘base-4%, and then to the ‘base-8', were proposed as
superior alternatives, but it 1s now un versallK
agreed that the best one is the ‘base-16°' (thoug
octal does have some modern uses). This gets rid of
the terrible inconvenience of binary that It needs so
many digits to express even quite 'small numbers, but
at the same time is is easy to translate from one to
the other if the need arises. The name given to
counting in this base is Hexadecimal (literally ‘six
and ten™ counting.

A big advantage of hex is that it expresses the
values of bytes in a way that is easy to comprehend.
The disadvantage to people unfamiliar’ with it is that
it needs six extra symbols to supplement the usual
0" to "9, and their ‘values take a while to sink in.
Rather than make up six completely new symbols the
first six capital letters were chosen (I ‘think they
should have made up new ones, and would have done it
for them if they'd asked me.) Hence the numerals
used in hex are as shown below.

decimal hex decimal hex decimal hex
0 0 6 6 12 Cc
1 1 7 7 13 D
2 2 8 8 14 E
3 3 9 9 15 F
4 4 10 A 16 10
5 5 11 B 17 11

The sequence then continues in groups of sixteen so
that 20h is equal to 32d, 30h is equal to 48d, etc.

Notice that to avoid misunderstandings over which
base is being used, hex numbers invariably have a
letter 'H' appended. You can add a 'd' to decimal
numbers if you wish, but that is optional. Numbers
without a following letter are assumed to be 1in
decimal. Some writers use a small ‘h', which can be
easier to read.

Hex numbers are usually written with not less than
two digits. Hence | would be written as Olh; 13 as
Obh; 3 as 27h; etc. The highest two-digit hex
numﬁer is FFh, which 1is 255 in decimal. us the
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full content of an 8-bit byte can be given in two
hex digits, which is very convenient, particularly as
the right digit gives the value of the four rightmost
bits, and the left one multiplied by 16 gives the
value of the four leftmost bits.

Convenient or not, there is absolutely no need to
learn hex 1f you don't want to. You already
understand decimal, the keyboard already understands
decimal, and provided that 'the two of you can handle
the rudiments of binary, then you will have no
trouble at all with machlne code programming on the
'PCW'. However it is better to know 1t than not, and
computer literature usually takes hex for granted.

The Memory

The computer's memory 1s where it stores the
information given to it. The memory is arranged like
a stack of boxes each of which contains one byte.
The boxes are indelibly numbered so that we always
know which is which, and the number of each is called
its address. For the time being, assume that there
are 65536 such boxes, le. that the computer's memor
consists of 65536 byfes and that these each consis
of 8 bits. (In fact the '8256°' has 4 lots of 65536,
and the '9512' and '8512°' have 8 such lots, but we
won't be concerned with these additions until later.)

The address of the first ‘'box' is 0, which is written
as 0000h in hex, and that of the last one is 65535,
which 1s FFFFh. Notice that it takes exactly four
hex digits to reﬂ:esent the highest address, which is
the same as saylng that an address can specified in
two bytes. If there had been even one more address
then we would have needed three bytes to specify
addresses.

Take care over the distinction that an address
points to a single byte of memory, but the value of
address 1s made up of two bytes. Because there is
an address N2 O there are 65536 addresses even
though the highest one is only N2 65535.

It is a peculiarity of the Z80 that when we are
writing instructions for it we have to write two-byte
numbers with the Low Byte first and the High Bgte
second. This 1is just a convention adopted Dby the
Zilog Corporation for their own good reasons’ some
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ten or twelve years ago, and there are times when it
seems quite sensible. éensible or not, we are stuck
with 1f, and with a bit of practice it is easily
remembered.

However this convention applies only when writing for
the Z80, so 1if you were to write out a list of
addresses to show what was stored at each, then you
would use normal arithmetical procedure and put the
high byte first (to the left).

The table below gives a few addresses in decimal
notation, in hex normal arithmetical notation, and in
my own notation which shows the two bytes written
separately in decimal ready for use by fhe Z80 (low
byte to the left). It is a convention ‘of my own that
I' write these always in brackets with® a comma
between using a red biro that I keep for the purpose.

Decimal Hex Red-biro

0000
0001
000A
OO0OF
0010
0020
OOFF
0100
O1FF
0200

1000 O3E8
32000 7D00
64000 FAOO )
65535 FFFF (25

QOO0

MNOUW == O
N~

QN NO~ -
=HNONNA e >« v« OO
St

e

N OO O
S

et et (FF CN QL) s bt ot

IO N
ANAAAAAAAA S

OPNOMNON Wt 4 4 O
- wo

~
o
N

. AMND> e o

5)

Calculating the two bytes

To calculate the values of the two bytes starting
from an address in decimal, first divide by 256. The
High Byte's value is then equal to the result minus
any fractional part, and the Low Byte’s value is given
by multiplying the fractional part by 266. These two
byte values {which are in decimal) can be converted
to hex by a similar treatment of dividing by 16
instead of by 256, and bearing in mind that results
over 9 are represented by capital letters not b
numerals. The following examples convert 39452 into
its red-biro and hex equivalents:
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39452 + 256 = 154.10938 : the High Byte is 154
0.10938 x 256 = 28 : the Low Byte is 28
154 + 16 = 9.625 : the 1st hex digit is 9
0.625 x 16 = 10 : 2nd hex digit Is A
28 + 16 = 1.75 : 3rd hex digit is 1

0.75 x 16 = 12 ¢ last hex digit is C

Hence the red-birc version is (28,154) and the hex
version i1s 9A1Ch. Alternatively, you could calculate
the hex version direct from the decimal address by
successive divisions by 4096, 256, and 16 on the same
lines as shown for thé 'red biro‘ [The significance of
these numbers 1s: 4096=16x16x16 & 256=16x161.

Occasionally you will get a low byte value that is
not quite a whole number, although it will always be
ver nearlama whole number unless you have made a
mistake. such cases round it up or down to the
nearest whole.

Unless you like calculating you may as well give the
task tc BASIC when it 1s availlable. The followin
short program accepts an address in decimal an
prints out the red-biro version.

100 INPUT; “Address ? *,a

110 b = INT(a/256): c = a - b#256

120 PRINT TAB(24); "(*; c; ","; b; ")

130 GOTO 100

Calculating a decimal address

To reverse the process you can obtain the decimal
address from ed-biroc by (256xHigh Byte) + Low
Byte. To convert a hex address to decimal, first
re-write any letter daﬁfts as decimal numbers, and
then multiply them by 4096, 256, 16, and 1, as shown

below:
9 4 9 9 x 4096 = 36864
A 3 10 10 x 256 = 2560
1 4 1 1 x 16 = 16
cC ~» 12 12 x 1 = 12

total = 39452
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The Z80 processor

Machine Code Instructions

Machine code instructions are not 1like the
instructions given in BASIC. A machine-code pro ram,
which 1is usua 1Iy called a 'routine’ or a ‘'sub-routine
(which latter will abbreviate to "sub-r") consists
of a sequence of numbers at consecutive addresses in
memory. The program 1is run by telling the processor
which address to start at. It runs through the
numbers in turn treating each one as an instruction
to do something specific. When BASIC is in place, the
start instructlon is ‘call, z', where 'z' 1is a
variable that has been given the value of the start
address. (See page 42.)

Because an address can hold only a single byte, only
the numbers O to 255 can be used "as m/cC
instructions, but the total number of them 1is not
256 but about 800 because some are two bytes lon
and hence more combinations are possible; 'but don
despair - you don't need toc learn all 800 of them !

There are several large groups in which the
instructions are similar to each other; over 100
relate to loading the registers (see below), and
about 200 relate to setting, resetting, and checking
individual bits. All you need to do is to become
familiar with the nameés of these groups and know
what kind of effect they have. They are described in
Chapter 4.

The Registers

There are only a few wa¥s in which the Z80 «can
process data ‘that 1is still in memory. For most
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gurposes it has to take the data out of memory, put
t into one or more of its registers and there
process it according to the instructions it has been
glven. The registers are stores inside the Z80 each
of which can hold one 8-bit byte, though some can
act together as a register—pair for storing 16-bit
numbers. The Z80 has 22 registers, though 12 are
best left for the use of the PCW for its own
housekeeping dutiles; but don't feel cheated,
registers can be wused very flexibly, and the
remaining 10 will be enough for our requirements.

The registers, which are referred to by their letters,
operate as if they were arranged as follows: i

iVl

L
L
=

A schematic arrangement of the registers

The A register is the most versatile and probably the
most used. It is also called the accumulator. It
is the register in which many of the computations
and all of the comparisons are made.

The F register is a speclal one called flags. It
ets its name because it consists of a set of six
dicators each of which 1is called a ‘flag’. The
flags indicate the effects of the last operation.

Although the contents of ‘'flags’ can be moved into

and out of memory alongside the contents of the

accumulator, the two are not a register pair because
they have independent roles.

The next six registers can each act as an independent
8-bit register, or with the register shown beside it
as a 16-bit register pair, in which case the one
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shown on the left (B, D, or H) takes the High Byte,
and the one on the right (C, E, or L) takes the Low
Byte. In the last pair the names were chosen to
indicate this, ie. H for ‘high', and L for ‘low’.

Although these six registers are mterchanqeable for
many uses, they also have some specialisations. The
HL ‘pair is particularly useful making additicns
and subtractions of 6-bit numbers, and also
'‘pointing® to addresses. Because of this it is used
more than any other palir. The DE pair has the
specilalised role of pointing to the addresses of
strings and to other features required by the CP/M
operating system. The HL and DE pairs can also
exchange 16-bit numbers, which is very useful.

The B and C registers are a bit of an odd pair out,
though B comes in for a special counting function
and finds an application in specifying which CP/M
function is required, and of course BC can hold a 16-
bit number as and when required.

The Flags
Without an arrangement of flags computing would be a
much more devious process than it is. he Z80 has

six (leaving two bits in F unused), but we will be
concerned with only the two most used ones. They
operate as follows : 4

The Carry flag

Abbreviated to C, or to Cy (to avoid confusion with
the 'c' register), is set by any operation that causes
an overflow. Thus 1if the last operation was a
subtraction that gave a negative result, or an
addition gave a result that was too large for the
totalising register(s), then this would set the Car;g

flag. omparisons count as subtractions.
arithmetic operation that did not lead to either of
these conditions would reset Cy. It can also be set

and reset by ‘'shift' and and ‘rotate’ operations (see
page 34).

The Zero flag

Abbreviated to Z, 1s set by an addition, a
subtraction, or a compariscn that gives a zero result.
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It is reset by an operation of this type that does
not give a zero result.

The two flags are not affected b 1oadin§ operations,
nor by many others of a non-arifhmetical kind. They
are affected by additions, subtractions, and b
number- and bit-wise comparisons. They are affected
by incrementing or decrementing 8-bit registers, but
not by incrementing or decrementing the 16-bit
register—-pairs. (Incrementing means addin.g 1 to*,
and decrementing means ‘subtracting 1 from®  There
are speclal Z80 instructions for these actions.)

The Stack

The stack 1is a small area of memory given over to
the Z80 as a 'scratch-pad' on which it records things
that it needs to remember but doesn't want to devotie
valuable registers to. The latest address on the
stack 1s pointed to by a 16-bit register called (what
else?), the stack pointer, which 1s abbreviated to

lspl.

When the machine is switched on CP/M provides a
stack that is freely availlable, and this is the one to
use until you are familiar with the ins and outs of
stack operations. It is allecated 64 bytes, which is
a generous amount of room in most circumstances.

Alternatively, you can decide on your own location
for the stack if you 1like. You do this by loading
'sp' with your chosen address, but if your program is
not fully self-contained you must make provision to
return to the old stack when it has finished. You
nust also give it enough room to 'grow' as more
information is added tec 1it. In short programs only a
dozen or so bytes would be enouglh, in larger ones, to
be on the safe side, you might allocate it as many as
three dozen, which would be generous.

The stack grows downwards into successively lower
addresses, so that the ‘top of the stack' Is at a
lower address than the ‘bottom of the stack'. It
grows by a pair of bytes each time a ‘call' is
encountered (the m/c version of GOSUB), but retreats
by the same two when the call has been completed.
However 1if you have a set of deeply nested calls
(several sub-routines called from within each other)
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then the stack can grow quite large before being
returned to its former size.

R

As the stack 1is also used a sort of fast retrieval
storeroom for the contents of register pairs b)é
means of the ‘'push’' and ‘pop’' instructions, it migh
be better not to make any changes to the content of
'sp' until you are have had plenty of m/c experience.
A wrong address in 'sp' 1s a tried and trusted way of
making programs crash, but left alone the Z80  has
the problem sussed.

The Program Counter

The program counter (referred to as 'pc") is the
16-bit register in which the Z80 keeps track of
which address it should go to for 1its next
Instruction. It automatically ugdates 'pc’ according
to whether it is now dealing with a 1-, 2-, 3- or 4-
byte instruction, and thus 1s always able to move
straight to the start of the next ‘one when it has
finished the last. It alsc modifies the content of
‘pc' when 1t encounters ‘'jump® instructions (like
0TO). It isn't possible for a programmer to change
the content of 'pc'; which 1is perhaps as well. The
operation of the Stack and the Program Counter are
described further in Appendix 6.

Assembly Language

If the Z80 were a person then we could say to it,
"Put the value 100 intoc the A re&ister, then transfer
it to address Ne 12345, and stop". Because it is a
microprocessor we actually have to feed it with the
stream of bytes;

62 100 50 57 48 201

This gives rise to what we might call a communica-
tions gap. The sentence means nothing at all to the
Z80, and the row of numbers means preclous little to
most of the rest of us, but fortunately there is an
intermediate language that 1looks suftficiently like
English to be meaningful once you are used to 1t, and
is at the same time an economical and precise way of
specifying the actions that we require of the
processor. It 1s called Assembly Language Dbecause
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it is the language in which m/c programs are usually
first assembled.

Assembly Languaﬁe is written in abbreviations called
mnemonics. mnemonic 1is a ‘reminder’, ie. in
abbreviated form 1t reminds you of the thing it
represents; hence °‘1d* 1is reminiscent of ‘load’, '21"
of ‘jump relative’ and ‘'Jp nz' of ‘jump not zero' etc.
The set of all the Z80 mnemonics 1is called the 'Z80
Instruction Set’.

They are the names of the groups of actions that I
referred to two pages ago. Once you are familiar
with them, m/c is a pilece of cake, hough I suggest
that you don't swot them; the easiest way Is to
write 'a few programs, because then your need to find
easier methods of doing things will bring new ones
to your attention.
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The instruction set

The Z80 Assembly Language instructions are listed
with their decimal codes 1in Appendix 1, but the
following brief descriptions wi help to explain
their effects. If you are unfamiliar with m/c I
suggest you read through this chapter to gain some
impression of what kinds of instruction are available
before moving on to look at the process of
grogramming. No doubt you will return here from
ime to time for clarifications.

The °‘load’ instructions

In describing the ‘load' instructions, I have written
a%l 1ltﬁ—bit numbers as a single decimal number for
clarity.

‘Load' 1is the instruction to copy a number into a
register, into a register pair, or into a memory
address. The mnemonic is 'ld' followed by an
indication of what should be loaded to where. The
‘where’ comes first and the ‘what' second, eg.:

ld a, 99 load A with the number 99
ld ¢, 101 load C with the number 101
ld a, h load A with the content of H

ld b, ¢ load B with the content of C
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When something is loaded into a location you don't
need to clear the location first; anything in it is
automatically obliterated. On the other hand, the
location loaded from 1s left unaffected. Thus the
following sequence would leave the registers A and D
both containing 100 :

ld a, 100 load A with 100
ld d, a load D with content of A

You can also direct1¥ load a register-pair with a 16-
bit number as in the following examples, but you
can't load from one pair into another pair in one go
(do 1t one register at a time) :

ld bc 65535 ld de 1000 1d hl1 0

Loading into Memory

It is not possible to load a number directly into a
memory address, but there are several ways of doing
it indirectly. The most obvious is to put the number
into A and from there transfer it into the chosen
address. Thus the stream of bytes I mentioned above
would be written in Assembly Language as :

ld a, 100 load A with 100
ld (12345),a load addr 12345 with contnt of A

An alternative route would be to use HL as a pointer
to the address into which the number 1s to be loaded

ld hl 12345 "load HL with the number 12345
ld (hl), 100 load the HL addr with 100

There are other routes. If you use HL as adpointer
then the address pointed to can be loaded directly
with a number <(as above), or with the content of an
register (including either H or L), but 1if either D
or BC are acting as the pointer, then only the
content of A can be loaded to the address :

ld b, 100 ld a, 100 ld a, 100
ld hl 12345 ld de 12345 ld bc 12345
ld (hl), b ld (de), a ld (bc), &

A very useful instruction is one that allows you to
copy the two bytes in a register-pair into two
consecutive addresses in memory. The following
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instruction would put the byte in L into address N2
1000 and the byte in H into address N2 1001:

ld (1000>, hl

Notice that the high byte goes intoc the higher of the
two addresses, which makes more sense of Zilog's byte
sequence. A similar instruction 1s available for
both BC and DE. Notice that an address 1is always
indicated by brackets; the instruction ‘Id 1000, A1’
would be meaningless.

Loading from Memory

Bytes can alsc be copied from memory into registers
in methods similar to, but the reverse of, the
methods described above. The contents of memory are
left unchanged by these operations. In general terms
A can be loaded directly from memory, or by using
any register-pair as a pointer, but the other
registers can be loaded from memory only bX means of
HL™ acting as a pointer. To load from Address N2
1000 the various Instructions would be :

ld a (1000) load A from address N2 1000
ld hl 1000 load HL with the number 1000

ld e (1) load E from addr polnted to by HL
1ld de 1000 load DE with the number 1000
ld a (de) load A from addr pcinted to by DE

Two bytes at consecutive addresses can be copied
into a pair from memory, as by :

ld hl (i000) load L from addr N2 1000 and
H from addr N2 1001

1d bc (24000) load C from addr N2 24000 and
B from addr N2 24001

Notice that again the address 1s in brackets. This
is shorthand for ‘the 16-bit wvalue stored at this
address and the address above’. Numbers not in
brackets are Jjust numbers. Suppose that address
1000 contains 10, and address 100! contains 1.
1d hl ¢1000) will put 266 into HL, but l1d hl 1000
will put 1000 into
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8-bit Additions and Subtractions

The Accumulator 1is the only register in which 8-bit
additions and subtractions can be made. Whatever A
contains you can add to it or subtract from it either
a number, the content of a register, or the content
of the memory address pointed to by HL. The result
is always to be found in the Accumulator. You can
also add the contents of A to itself thus doubling
what was there.

If the result of an addition would be larger than 255
then A overflows thus setting the Carry flag and
givi the arithmetic result minus 256. If the
result of a subtraction would be negative then the
Carry flag is set and the arithmetic result plus 256
i1s given. Zero results set the Zero flag. Consider
the "example:

ld a, 100 load A with 100
ld h, 250 load H with 250
sub a, h ## subtr contnt of H from A (sets Cy &

1d ¢, 10 load C with 10 resets Z)
add a, ¢ add contnt of C to A (Cy & Z reset)
The subtraction sets the carry flag, resets the zero
flag, and leaves 106 in A (af ‘#%')., Then a further

10 1s added to A, and, because this does not cause a
carry, a borrow, or a zero result, the carry and the
zero flags are both reset. At the end of the
sequ$nce A would contain 116, and Cy and Z would be
reset.

16-bit Additions and Subtractions

The content of BC, DE, or HL, can be added to the
content of HL. The content of BC, DE, or HL can be
subtracted from the content of HL, but Cy is always
included in the subtraction. Instructions for incl-
uding Cy in the additions are also available, so if Cy
happens to be set then an extra ! is added, but if it
1s reset then no extra 1 1is added. Including the
carry flag is used to carry forward the ‘carry' or
‘borrow’ of previous operations into the present one.
The mnemonics for the three BC operations are :

add hl, bc add the content of BC to HL
adc hl, bc add BC plus Cy to HL
sbc hl, bc subtract (BC + Cy) from HL
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If you want to make a subtraction from HL without
the Carry flag being involved it 1s necessary to
cancel Cy, ie. make sure it is reset, first. This can
be done through a number of instructions, of which
‘and a’' and ‘or a' leave the content of A
unchanged.

Cy is set if an addition into HL would exceed 65535,
and the arithmetic result minus 65536 is given. If a
subtraction from HL would give a negative result then
Cy is set and the arithmetic result plus 65536 is
given. Zero results set the zero flag.

You can't make direct additions or subtractions of a
sinéle register to or from a register-pair, but you
could add the content of, say, C to HL, as by:

ld b, 0 zerolse the high byte of BC
add hl, bc add BC [(=C] to HL

Number Comparisons

Without the ability to compare numbers, computing
would hardly be possible. All comparisons are made
against the value in A. The mnemonic is ‘cp‘’. For
example ‘cp a, 20' means "subtract 20 from the
content of A, and then restore the content of A to
its former value®. Hence the value in A is left
unchanged but the comparison will have had its effect
on the flags.

If A had contained 20 then the result of the
subtraction would have been O and the zero flag
would have become set. Had the value in A been
less than 20, then the Carry f la§ would have become
set. An absence of these conditions resets the fla
concerned; so if A contained any number other than 2
then Z would become reset, and 1if it contained any
number more than 19 then Cy would become reset,.

It 1s possible to compare the value in A with
numbers from O to 255, with the content of any of
the 8-bit registers, or with the content of the
memory address pointed to by HL. Obviously no direct
comparison with register-pairs 1s possible. The
mnemonic 1is followed by the subject of the
comparison, for example:

cp a, 20 cp a, ¢ cp a, (hl)
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Bit-wise Comparisons

Three of the 'logical operations' are avallable for
use on the content of A. These are ‘AND°®, ‘OR*,
and ‘EXCLUSIVE OR°. The subject of the comparison
may be a number, the content of a register, or the
content of the memory address pointed to by HL.
Suppose the comparison we want is against the number
7, which 1in binary is 00000111 and that the
gcl.\r(l)tl%nl%lof A happens to be 85, which in binary is

The 'AND' instruction leads to A containing only those
bits set that were set in BOTH of the 8-bit groups.

A contains 01010101
7 consists of 00000111
so 'and a, 7' leaves 00000101 in A
‘And' 1s useful for ‘'masking', 1e filtering-out
Particular bits in the accumulator. If ou use

and a,15', for example, the 4 leftmost bits of A will
be reset leaving oniy the 4 rightmost in theilr
original state, but ‘and a,240' resets the 4 on the
right and preserves the others. Hence, the
accumulator could be used to receive two (or more)
small numbers from a single memory address, and
these then be separated by masking.

The 'OR' instruction leads to A containing any bit set
that was set in EITHER of the 8-bit groups:

A contains 01010101
7 consists of 00000111
so ‘or a, 7' leaves 01010111 in A

The ‘EXCLUSIVE OR' instruction leads to A containinﬁ
any bit set that was set in EITHER ONE, but NOT BOT
of the two 8-bit groups. Hence in the example:

A contains 01010101
7 consists of 00000111
so0 'xor a, 7' leaves 01010010 in A

These operations are also useful for their effects on
the flags. Thegyé always RESET the Carry f la%, and the
Zero flag 1is T if the result 1s zero, but RESET
otherwise. Obviously a number XORed with itself must
always give zero so the instruction ‘xor a, a'
leaves the accumulator empty, sets Z, and resets Cy.
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Alternatively, both ‘or a, a* and ‘and a, a' reset
the Carry flag but leave the content of A unaffected.
As indicated earlier, they can precede the ‘adc' or
'sbc’ operations to cancel Cy.

NOTE ON NOTATION: In operations that must
involve the A register, it is not usual to to refer
to A. However, 1 have written it in so that the
structure of the mnemonic is as clear as Possible.
Thus I have used the form ‘cp a, 20' and ‘or a, a'
c.atc., whereas the more usual one is ‘cp 20' and
or a'.

Jump Relative

As BASIC requires the GOTO command, so m/c requires
its ‘jump’ instructions. The first of these is called
‘Jump relatlve' because the jump is made a specified
number of bytes ahead or behind (ie. relative to) the
present address. The mnemonic is ‘jr' followed by the
Jumg distance (called the ‘'displacement®), which is
contained in a single byte. Because both forward and
backward Jumps are required, it is necessary to be
able to specify either a positive or a hnegative
number for the displacement, and because a sign bit
limits the capacity of a byte to 127, relative Jumps
can be no larger.

As well as the standard instruction, there are four
others that order a Jjump only if certain flag
conditions are met:

Jr N "jump relative” J N bytes

Jr ¢ N "fp relative carry" if set ditto
Jr nc N "jp relatv no carry” 1f net set do
Jr z N "jJump relative zero” 1f Z set then do
Jr nz N "jp relatv not zero" 1f not set do

[

A value of N of 128 or more indicates that a
backward Jjump 1s required (the sign bit has an
arithmetic value of 128), the distance of the Jump
being (256-N) A reﬂuest for a Jump back of 6 bytes
on the condition that Z was not set would be written
as: Jr nz 250

The count backwards or forwards 1s taken from
immediately after the address of N, so the first
address counted in a jump back is the address of N.
The first one counted in a jump
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forward 15 the address
following the one containing N. ;

»
Q
o)
)

o
<

ﬁ
1]

(See page 45.) 1 ’
These instructions have the =2 | 24
advantage of making the sub- 3 9
routine  ‘relocatable’, ie. the a4 :
whole of it could be moved to a = :
different place in memory and S | "Y1

the Jjump instructions "would

still be accurate because they x =
don't relate to specific 8 :
addresses. They have the o 24
disadvantage of providing only 10 | 251
fairly small jumps, though this 13 :

can be overcome by leap- 1= -
frogging, 1le. arranging that one e
jump should be to ancther, thus 13 | 'X
providing a chain of Jumps. 14 .
dinz A jump forward 9 bytes

to 'X', and a jump back
This 1is a special version of P s
Yt Its P full name is of & bytes to 'Y
‘displacement jump not zero'. It

1s used exclusively as an

economical way of ordering a

repetitive loop. The count for the number of
repetitions 1s first put into the B register, the loop
rocedure 1s then defined and the instruction ‘djnz’
s added at the end together with the displacement
required, which 1is invariably negative (le. giving a
ump backwards). It is vital of course to keep the
1d b, N' instruction outside the locp or the count
will be refreshed at every pass and the program will
be stuck in the loop for ever (or until you pull the
plug out).  That possibility aside, the instruction
automatically decrements B and ceases to loop back
when the content of B reaches zero.

Jump Absolute

The third kind of Jjump is called ‘absclute® because it
i1s made to a specified address. The mnemonic is ‘jp°
followed by the address in question. As in all such
cases, the address is given low byte first. As
with 'Jr', there are alsc four conditional versions,
and there 1is alsoc an unconditional version that
allows a jump to the address pointed to by HL. This
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i1s useful when you require a jump to an address
whose value you don't know when you are writing the

program. You arrange for some calculation to
ut the address intc and then request the jump to
t. Its mnemonic is 'jp (h1)'. The six versions are:
Jp NN “fump"” Jump to addr given by N N
jg c NN "Jumg carry" i if C sgt gitto
Jp nc NN "jump no carry” if not set ditto
Jpz NN *jump zero” 1f Z set ditto
Jp nz NN "jump not zero" if Z not set ditto
Jp hl> "Jump to (hl)" Jump to addr in HL

Increment and Decrement

The content of an 8-bit register or of the memory
address pointed to by HL can be increased or
decreased by 1 by the instructions ‘inc' and ‘dec’

respectively. Because the flags are affected
accordil to the result, these  instructions are
useful counting operations. If a register is

repeatedly decremented and finally reaches zero this
sets the Z flag, which will indicate that the count
is complete.

Because additions to and subtractions from registers
other than A are not available, ‘inc' and ‘dec' are the
only ways of changing their contents directly.

The 16-bit register pairs can also be incremented and
decremented, but without any effect on the flags.
This means that counts of more than 255 can't be
made without a bit of subterfuge, but consider:

start 1ld bc, 10000 Count Into BC
start+3 i s @ ® The loo
e e procedure.
dec bc Decrement the count
ld a, b and test
or a, ¢ for zero.

Jr nz 'start+3' Repeat 1if not zero
v e else continue

The count of 10,000 (or any other 16-bit number) is
ut into BC. After each pass, BC is decremented and
he value left in B is puf intoc A. The value left in.
C is then ORed with it. If either A or C is not zero
then the result will not be zero and the program will
be told to jump back and go through the loop again.
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When the count is complete both B and C will contain
zero and the jump back will not be made. Loading A
from B is necessary because B and C can't be ed
directly.

Call and Ret

The instruction-pair ‘'call' and ‘ret' are the
equivalent of GOSUB and RETURN in BASIC. ‘Call’ is
followed by the 2-byte address at which the called
sub-routine starts. ‘Ret' is a 1-byte instruction
needing no address. Following a call, the Z80 works
through the sub-r until it finds a ‘ret' and then
returns to the main program where it executes the
next instruction. Before starting the ‘'call', the
rocessor puts 1its return address onto the top of
he stack, and at the 'ret' it collects the address
and returns to it. Obviously it must find the
correct address if the return is to be successful, so
if the stack has been changed (as by a ‘push’, for
example) then 1t must be changed back before the
sub-r ends. (For more on stack operations see
Appendix 6.)

If it doesn't find a ‘ret' in the sub-r then the Z80
will go marching on to higher and higher addresses
activating whatever it finds there "with usually
terminal results. It is equally important that there
should be no accidental ‘'ret' in the frogram not
associated with a ‘call’; any such will cause an
excursion to a false address and chaos. However, a
sub-r may contain any number of ‘rets' because the
first one encountered will be the only one to be
activated. The {processor never sees any of the
programming that follows the ‘ret' it responds to.

There are conditional versions of both ‘call' and
‘ret', and the condition for the one need not be the
same as that for the other. (You might have the
'‘call' conditional on Z being set, and the ‘ret' being
unconditional, or any other combination.)

Sub-routines ma¥ be ‘nested’, ie. a sub-r may be
called from within another, and ‘recursive’, ie. a sub-
r may call itself, though in this case the call must
be conditional or a closed loop will be formed and
the stack will overflow. The mnemonics are :
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call NN ret

call ¢c NN ret ¢
call nc NN ret nc
call z ret z
call nz NN ret nz

Block Handling

A pair of instructions that have always impressed me
with the beaut of their conception and the
convenience of their use are the so called ‘block
handling instructions'. These allow a block of bytes

to be copied to another location in memory. hey
are:
ldir le. load, increment, and repeat
lddr fe. load, decrement, and repeat

They require all three register-pairs. First you put
the” address of the DEstination into DE, the address
of the source intc HL, and the count of Bytes to be
moved into BC, then you give the instruction.

In the case of 'lddr' the byte pointed to by HL 1is
copied to the address pointed by DE, then all three

register pairs are decremented. For 'ldir' every-
thing 1is the same except HL and DE are both
incremented. The operation is repeated until the

content of BC reaches zero. The original data is

left unaffected so you end up with two versions of

it unless the new one has partialll{z over—-written the

old. When the operation 1is over, and DE will both

have been adjusfed one extra time, ie. they will be
iﬂn;cing to addresses which are just cutside the data
ocks.

Fa))

Programming occasionaly needs an area of memory to
be zeroised or filled -with some other invariant byte.
For areas of less than 128 bytes a 'djnz’' loop 1s the
best solution, but for large ones °‘ldir' achieves the
same effect very neatly. Peint HL to the first
address and DE to that address +1. Put the required
number of bytes into BC, load the HL address with
zero (or whatever) and then use ‘ldir‘. The DE
address 1s constantly loaded with what is found in
the HL address and in the next iteration HL will
point to the previous DE address.

Be careful with 'ldir' and 'lddr'. If you call cne
accidentally, or put the wrong address in DE, you will
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have discovered a super way to corrupt your
programs.

There are non-repeating versions of 'lddr' and ‘'ldir'
called 'ldd* and 'ldi' respectively. A byte is moved
and the registers are changed as described above, but
the action is not repeated, though you can make them
regeat by including them in a loop. This permits
other actions to be taken after each byte transfer.

Block Comparisons

There are instructions similar to the above except
they 1nvolve comparisons instead of copying. The
repeating ones are :

cpir le. compare, increment, and repeat
cpdr te. compare, decrement, and repeat

In ‘cpdr', BC is loaded with the maximum number of
comparisons required and HL with the first address.
The content of A is then compared with the content
of the address pointed to by HL. If these two are
not the same then both BC ‘and HL are decremented,
and the procedure repeated until either BC contains
zero or a matching comparison is found. In ‘cpir' the
grocess 1s the same except HL 1is incremented every
ime. The 1instructions can be used to scan data
tables for a particular byte; on return BL points to
it and Z is set if a match is found, otherwise HL
points to the end of the table and BC contains zero.

The non-repeating versions are :

cpl ie. compare and increment
cpd le. compare and decrement

Push and Pop

Quite frequently there is a need to store the content
of a register pair so that the registers can be put
to other uses. You can use available memory but
then you will need to make a note of of the address.
Frequently 1t is more convenient to use the ‘'push'
Instruction which puts the two bytes onto the top of
the stack and decrements 'sp’ twice. The bytes " can
be recovered later by a op' which reverses the
procedure. In both cases the name of the register
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pair has to be specified, and a ‘push' must always be
assoclated with a 'pop' and vice versa or the 'stack
will become unbalanced with the usual results.

You can make any number of pushes before poppin
them 1if the stack is big enough, but remember tha
the last dpair to be pushed will be the next pair to
be popped, le. they come off the stack in reverse
order. You don't have to 'pop' the same registers
that you ‘pushed' so this gives a convenient way of
moving the bytes to a different register-pair. ° The
mnemonics are :

push af pop af
push bc pop bc
push de pop de
push hl pop hl

It is not possible to ‘push' or 'pop' a single register
so A 1s always pushed and popped in association with
F. (So bear in mind that popping AF may restore an
out-of-date set of flags.)

A useful feature of ‘'push' i1s that the register-pair
is left wundisturbed. Thus if you push HL three
times, you acquire four versions of it; three on the
stack and the original.

The Shift Instructions

The contents of any of the 8-bit registers or of the
memory address pointed to by HL can be shifted one
glace to the right or one place to the left. The
1t that 1is pushed out (either the most- or the
least- significant bit) is moved into the Carry flag.
It is replaced by a zero moving in from the opposite
end. These operations are referred to as ‘srl* and
‘'sla' respectively.

A shift to the right halves the value of the 8 bits
concerned (but loses any fraction). A leftward shift
would double the value except for the loss of the
most significant bit which must somehow be accounted
for if "a true doubling 1is to be given. (See the
second para. in "Rotations® below.) If you start with
bit N2 7 reset then this point is already covered
because then no set bit Is lost (in 8 bits you can
double numbers smaller than 128, but not numbers
equal to or larger than 128).
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There is a second version of the right shift called
‘sra'. This leaves bit N2 7 unchanged but puts the
zero into bit N2 6. Hence a negative number would
not have its sign changed by this operation. The
mnemonics and full names of the three shifts are as
follows (R' stands for a permitted location - a
register or the addr pointed to by HL) :

sla R shift left arithmetical of 'R’
sra R shift right arithmetical of 'R’
srl R shift right logical of 'R’

The shift instructions play a major role in
calculational procedures such "as fast multiplication
and division, but they are also used whenever bits
need to be tested cne at a time. The fact that the
end bit 1s moved into Cy at each shift makes it
possible to take alternative actions according to
whether the bit is set or not. Appendix 1 gives
diagrams of these instructions.

The Rotation Instructions

The rotation instructions permit a right- or left-
ward movement of the same locations as the shifts
and find use in the same applications, but instead of
shedding the end bit it is fed back in at the
ogposite end. There are four such instructions, the
first two of which are 'rr' and 'rl‘'; ie. "rotate right"
and “rotate left". 1In the rightward version, Cy is
put into bit Ne 7 and bit N2 0 is put into Cy, thus
making it a 9-bit rotation in effect. The 1ef tward
version 1s similar except for the direction of
movement; Cy finishes in bit N2 O and bit N 7 in

Cy.

In a pair of reiisters we can obtain a true doublin
by treating the Low Byte with ‘'sla’ followe
immediately by ‘rl' on the High Byte. The first
instruction puts bit N2 7 into Cy, and the second
transfers it from Cy into bit N2 8.

The remaining two rotations are ‘'rrc' and ‘rlc' which
mean “rotate right cyclical" and “rotate left cyclical”
respectively. They  are 8-bit rotations with the
displaced bit being reflected in C¥. They allow for
sequential bit checking without the loss of bits.
Appendix 1 gives diagrams of these instructions.
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‘Rotate Digit® & °*DAA’

There are two rotate 1instructions used in BCD
calculations which rotate bits 0 to 3 of A with the
bits of the address pointed to by HL four bits at a
time. These are :

rld rotate left digit
rrd rotate right digit

'rld' operates through the following sequence; bits O
to 3 of the HL address are moved to bits 4 to 7 of
the HL address, bits 4 to 7 are moved tc bits 0 to 3
of A, and bits O to 3 of A are moved to bits 0 to 3
of the HL address. ‘rrd operates on the same bits
but with a rightward shift in the HL address. BCD
stores 1ts numbers in sets of four bits, and these
operations allow each set of four bits in the addr
ointed to by HL to be examined separately in A.
ecimal Adjust Accumulator' has the mnemonic ‘daa’
ﬂd i1s used solely in BCD calculations. See Chapter

Carry Flag Instructions

Reset: There is no instruction for resetting Cy
but this can be done by using ‘or a'.

Compl: There is an instruction ‘ccf' t0 complement
the flag, le. to change its status by
setting it if it is reset, and vice versa.

Set: There is an instruction to set the flag
which 1s ‘scf’.

Exchanges

The contents of HL and DE can be exchanged by
'‘ex hl de'. This is useful because HL is the only
pair that can act as the totaliser in ‘add‘’, ‘sbc’,
etc, so in a sequence of arithmetical actions you
need to keep Qreservin its contents whilst freeing

it for the next one. 's a pity there is no version
involving BC.

The instruction ‘ex (sp) hl' takes the top two bytes
from the stack into and replaces them with’ the
two that were in HL There are other exchange

instructions but on the 'PCW' their use is fraught
with complication.
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Neg, nop and complement

There 1s an 1instruction for complementing the
contents of the Accumulator : ‘cpl’. This resets
all set bits, and sets all reset biis (thus giving the
‘ones complement' of the value in A).

Neg and n%p are not connected but they go well in a
title. eg' means ‘'negate the contents of the
accumulator'” It complements the contents of A and
adds one, thus giving the so called 'twos complement'’
which 1s equivalent to subtracting from zero. If a
subtraction has taken the contents of A belew zero,
then 'neg‘ has the same effect as the BASIC command
‘ABS'. (See Appendix 3.)

'Nop' doesn't do anything, literally. It stands for
'‘no operation®’, and its code is zero. Not the most
fruitful command, you might think, but bless the
foresight that included it.” If the Z80 encounters a
se%uence of zeroes it happily marches through them
without doing anything injurious. Thus a gap between
two parts of your program is no problem if it is
zerolsed. You ‘can also put zerces in place of bytes
that you want to eliminate; this ensures that no
addresses will be changed, and that all the ‘jr'
distances will be preserved.

Lots of Bits

There are three ogerations that can be applied to any
bit in the registers ABCDEH, and L, and in the
address pointed to by HL. They are :

res N, R set N, R bit N, R

N is the bit Ne, and R is a register or the memory
address. 'Res‘' means 'reset thls bit', and ‘'set' means
'set this bit’.

res 6, (hl) reset bit N2 6 of the address
pointed to by HL
set 3,b set bit N2 of register B

The ‘bit' instruction allows you to test any of the
bits to see if it is set or not. The answer Iis
Krovided by the Zero flag. A zero bit gives Z set.

'1* bit gives Z not setl. (In logical parlance the
bit and Z are in complement.) Suppose D contains the
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value 64 which is 01000000. The following results
would be obtained :

bit 7, d - Z set
bit 6, d 3 Z reset
bit 5, d 3 Z set
bit 4, d 2 Z set
etc . . .

The ‘'bit' instructions can be used for testing flags
that the programmer has devised for himself. You
may have decided, for example, to use the 8 bits of a
memory address as a block of 8 f lags in which sub-
routines will record the outcome of their operations.
Later routines can then use ‘'bit' to discover what
had occured in earlier sections of the program; so
'‘vit' has become a means of communication.

Addressing Modes

Authors more stately than me find use for the
following terms:

immedlate addressing
direct addressin,
indirect address
Inxflied addressing
and relative addressing

I include them only because they are part of
computer mythology. They are not actually
w-language because no simpler alternative phrases
exist, it is just that I have not so far ever found a
use for them. They suit people who like labels.
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Writing a sub—routine

Without doubt the most convenient way of writing an
m/c program is to use an Assembler. Assemblers are
professionally prepared pieces of software (le. of
programming), which come in a variety of forms.

When using one sort you load the package into the
computer before starting to write your own program.
When 1t is in operation, you type in the mnemonics
you require in their intended order. With the other
sort you type your mnemonics into a separate ASCII
text tile which later you subject to the assembling
action of the Assembler program.

Both sorts have a built-in dictionary that theg use
to translate the mnemonics into machine code bytes,
which can later be placed in memory starting at the
address that you selected as the ‘origin' for your
grogram, and fhey usually run through your program
wice because that is the only way to establish the
true addresses for jumps. All professional
pro§rammers employ assemblers of one kind or
another, though these days not all of them operate at
quite the ‘'low level' of menemonics. If you intend to
Rrogress into commercial work then a knowledge of
ssembler  programming will eventually Dbecome
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essential, though for the hobbyist there are other
possibilties.

The main disadvantage of Assembler packages is that
they cost money. The very simplest are priced in
the  region of £50, the most advanced professional
versions are several hundred pounds. The more you
pay the more you get, but what you get 1is not
necessaril¥ pro rata to the cost, so 1t is wise to be
discriminating before you part with your money. The
risk is that 1f you go for economy then you may soon
find that your urchase doesn't cover  your
requirements (does it handle the whole instruction
set, does it give you code that you can move if you
need to, and what about linking programs together?),
Alternatively, if you ‘go for the best' then you ma
regret having spent Qood money on features you don'
need and perhaps can't even understand.

A point of real importance 1is that cheap Assemblers
don't g}ive the ‘pure code’ that you would get from
compiling by hand. This is because a full singin
and dancing assembler 1s a sophisticated plece o
software that has to react intelligibly to a wide
range of inputs, and the producers of cheap versions
have to resort to a variety of tricks to enable them
to cut down the number of man-years iIinvested in
writing one.

These make the Assembler slicker in its responses but
the penalty to the user is that the code produced is
far less compact and quite a lot slower in operation
than the hand-reared varilety, and if you inspected it
later 1t is certain that you would not be able to
translate back from it to the mnemonics you fed in.
Using a package llke this wipes out the point of
§ging to m/c the first place, and you may actually
worse off than if you'd stayed with BASIC because
with BASIC the grogram is at least accessible and
modifications to it are quick and easy to make.

Comfuter folk have not always shown/themselves to be
brilliant at communicating with actual people, and the
worst features of assemblers can be the
documentation, which often seems to be based on the
assumption that everfyone already knows what they do
and how to operate fhem. The PCW Utilities actually
include two free assemblers, but they are tricky ones
to use and are supplied with no instructions so
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getting then into operation is not easy, but if you
are inlerested it is worth a try.

To get round some of these problems, before buy1n§
one I suggest that you work through the presen
chapter and get as much practice with programming in
the way outlined as you can because this will give
you a insight into what m/c is and how it operates
and that may help you with your final choice. (M
own final choice was to write my own ‘Code-Insertion
System', which now does everi'th ng I want, mcluding
printing out the mnemonics with their code bytes an
addresses. It gave me many happy hours at the
keyboard sorting through the sub-routines I needed
and it didn't cost me anything.) If you already have
an assembler then this chapter may still be helpful
in broadening your understanding "of m/c in a way
that using professiocnal software might not.

Throughout the chapter I have elected to write all
bytes in decimal because I can be sure that everyone
will understand that, though not everyone knows 'hex,
and also because decimal Is easier to input throuqh
the keyboard. In case you think that decimal 1is
somehow ‘'wrong' or ‘inappropriate' for computer use,
then bear in mind that the computer has no truck

with hexadecimal either. Its own language is binary
and it 1s binary that finally whispers through the
printed circuits. What we use to produce the

whispering is best decided by convenience.

A BASIC program to insert m/c

Load BASIC into the machine and then type in the
following short program. When you have checked it
over, SAVE 1t under some short name such as "mc"
(short to avoid unnecessary key-jabbing).

Line 100 confines BASIC to address 49,999 and
below thus freeing address 56,000 and
above for our use (up to 62980; higher
than that is reserved for cpxn5.

Don't forget the comma.

Line 110 zerocises the first 101 addresses thus
erasing all previous programs.

Line 120 r?sgoges the data pointer to the start
o} ata.
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100  CLEAR, 49999

110 FOR n = 50000 TO 50100: POKE(n),0: NEXT
120  RESTORE

130  FOR n = 0 TO 500: READ k

140 IF k = 99 THEN STOP

150  POKE (50000+n), k: NEXT

200 DATA 0,0,0

490  DATA 201, 99

500 z = 50000: CALL z: STOP

1000 FOR n = 50000 TO 65535

1010  PRINT n; TAB(12); PEEK(n)

1020 a$ = INKEY$: IF a$ = " THEN GOTO 1020
1030  NEXT

Line 130 allows for the reading of up to 501 data

bytes.

Line 140 s¥o s the READ when the last byte '99'
is found; the 99 is a marker to indicate
that the end of data has been reached.

Line 150 pokes each byte into the next address in
sequence starting from 50, 000.

Lines 200 to_490 are for DATA lines into which we
will put the bytes of our m/c programs
ready for insertion into memory.

Line 500 runs the m/c program through the instr-
uction “CALL,z", 'z' having been set to
50,000. This directs BASIC to run the
m/c prﬂgram that it will find at address 50,000.
After 1t has run, the m/c program must arrange to
return to BASIC when its task is complete

“Run 1000" allows inspection of the bytes that are in
place from 50,000 upwards. Each 1is® shown with its
address. Press any key to display additional bytes,
and °STOP' to exit the list.

If you now input “"run", you will get the report Break
in 140. Ok' indicating that the BASIC program has run
through, found the "'99' byte and then the ‘STOP'
command.

If you input "Run 1000" followed b{ an extended ke
press then a list of addresses starting at 50,00

will be given on the screen, each associated with a
zero except for 50,003 which will have a '201°' beside
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it. This indicates that the three =zeroces from
Line 200 have been put into memory followed by the
'201' from Line 490. Press °'STOP' to exit the 1list.

If you input "run 500" at this stage you will get
‘Break in 500. Ok' showing that the m/C program at
address 50,000 has been run and the °'STOP' in Line
500 encountered. In fact the ‘m/c program' consists
of only three ‘nop‘'s and the byte for ‘ret’, which is
201. Hence the machine simply went to the routine
and returned from it without doing anything while it
was there. However this makes the polnt that a ‘ret’
1s essential if you are to terminate the program and
successfully regain control by a return to BASIC.

In this chapter I have written out the bytes that
need to be put into the DATA 1lines. When you use
the insertion program for yourself you will look up
the bytes from Appendix 1 'and write the DATA lines
accordingly.

A mini program

Tgpe the following line and add it to the listing,
then SAVE the program under a slightly different
name such as "mcl®. (This is a way of saving a
range of different programs without  changing the
fundamental one that g'ou can LOAD whenever you need
it, though with imporfant programs you will ‘probably
want to call them something more distinctive.)

200 data 6,7, 62,10, 33,100,195, 119, 35, 60, 16,251

After saving the modified program enter “run". Then
“run 1000" “followed by a keypress to reveal up to
address 50028 or thereabouts. The 1list of
addresses and bytes will now show the above sequence
of numbers followed b){{ the '201°' from Line 490, with
zeroes thereafter. he numbers were inserted into
memory by Lines 130 and 150.

If you now enter "STOP", "run 500", followed by "“run
1000", you will find additional numbers in memor
starting with '10' at 50020 rising to '16' at 50026.
These numbers were inserted by the machine code
program whose bytes were derived from the following
mnemonics :
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ld b, 7 6 7 Put the count 7 in B

ld a, 10 62 10 Put 10 Into A

ld hl 50020 33 100 195 Put 50020 into HL

1d (hl) a 118 ld the HL addr from A

inc hl 35 Increment HL

inc a 60 Increment A

dinz =5 16 251 Jump back 5 bytes if
count not now zero

ret 201 Else return [ to BASIC]

The mini-program illustrates the 'djnz' instruction
and 'djnz’' is the last but one mnemonic. It starts
b{ putting an arbitrary count of 7 into B (which is
always the count register for ‘djnz®), though any
count up to 255 could have been chosen. The
arbitrary number 10 is then loaded 1into the
Accumulator, and HL loaded with the start address (I
chose 50020 because it is close to the program bytes
and therefore convenient to inspect).

The next 5 bytes now form a loop that is to be re-
eated B times. This loop puts the value in A into
he address pointed to by HL and then increments
both A and HL before loo m% again. Hence the
sequence of numbers 10, 11, 12, .... up to 16 will be
éxa%%%ted into consecutive addresses starting at

Now change the end of Line 140 from * ..THEN .STOP"
to “ THEN GOTO 500", and replace the 'i10' in
Line 200 with '252°'. The first change cuts out some
ke)t/ pressing by running the m/c program straight
after loading the bytes Into memory so you no longer
need to enter “"run 500". SAVE then enter “run".

“Run 1000" should now give a sequence at 50020 that
reads 252, 253, 254, 255, O, 1, 2. Notice that the
increments to A increased it to the maximum value of
255 after which 1t zeroised and continued the count
from there. This is much 1like a mileometer which,
after showing its maximum value of all 9's, starts
again at zero. All the registers act like this, and
you get the reverse sequence if you decrement them.

To obtain the size of the jump back, the first byte
to count is the '251°, Then count back to and
including the. first byte that you want to loop from.
I draw arrows for the jumps on the listings of my
grograms so the logic of the routine is clear and so
he impact of any changes can be seen at a glance.
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Had this been a forward jump then the first byte to
count would have been the '201' and the count” would
have been up to but NOT including the byte you want
to resume operating from. If you know the address
that the jump is from (call it 'J*) and the address to
Jump to (call it 'b") then the jump size is:

%- b+ 1 for backward jumps
=3 =1 for forward jumps.

For backward jumps you subtract the jump size from
256 as indicafed = in the description of the
Instruction on page 28.

Testing the flags

EDIT line 200 by erasing the last two numbers, then
add line 210 below. The program will then LIST as:

200 DATA 6,7, 62,252, 33,100,195, 119, 35, 60
210 DATA 200, 16,250

When you have SAVEd and RUN this, “run 1000" should
reveal that addresses 50025 and 50026 contain ‘O,
not '1' and '2' as they did previously. This is
because the mini program now consists of :

ld b, 7 6 7 Put the count 7 in B

ld a, 252 62 252 Put 252 into A

ld hl 50020 33 100 1895 Put 50020 into HL

ld (hl) a 119 ld HL addr from A

inc hl 35 Increment HL

inc a 60 Increment A

ret z 200 Rgtur? [to BASIC] if

se

dinz -6 16 250 Else jump back 6 1f
count not zero

ret 201 Return [to BASIC].

The instruction ‘ret z' checks the Zero flag duriné
each pass of the loop. In the first 4 passes i
finds Z not set so the routine proceeds as before
(except that the jump back is now 6 bytes not 5 due
to the presence of the '200". However, during the
5th pass A 1s zeroised from 255 and this sets the
Zero flag. On finding Z set ‘ret z' orders an
immediate return to BASIC so that no further values
of A get put Into memory.
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Now EDIT 1line 210 to read:
210 DATA 214,100, 216, 16,248

The mnemonics for the program are now :

ld b, 7 6 7 Put count 7 into B

ld a, 252 62 252 Put 252 into A

ld hl 50020 33 100 195 Put 50020 into HL

1ld (hl) a 119 ld HL addr from A

inc hl 35 Increment HL

inc a 60 Increment A

sub a 100 214 100 Subtract 100 from A

ret ¢ 216 Return [to BASIC] 1If
Cy set

djnz -8 16 248 Jump back 8 bytes 1f
count not zero

ret 201 Else ret [to BASIC]

When the program is now SAVEd and run, inspection
shows that the sequence at 50020 and above is 252,
153, 54, 0, 0, O etc.

During each loop, 100 is subtracted from the value in
A and the Carry flag is checked by ‘ret c'. In the
first 3 loops Cy 1is found not set so the program
continues. In the 4th loop the subtraction takes A
below zero thus settin y so 'ret c' orders an
immediate return to BASIC and no further numbers are
inserted into memorK. Notice that the jump size is
now -8 because of the extra bytes.

Multiple Choices

The following development of the minil program
illustrates how different actions can be taken in
different circumstances. I want to add 100 to the
value in A at each pass through the loop, starting
with 7; if the result is less than 100 or more than
199 then I want that value to agpear in memory, but
if it 1s in the range 100 to 193 then I want e to
appear 1in memory. The program 1is longer and
overlaps 50020 so the HL address has been moved up
to 50029 so that the program doesn't overwrite
itself (de. it doesn't insert inapropriate bytes
inside the program) and cause a crash.
b, 20 6 20 Put count 20 into B
ld a, 7 62 7 Put 7 into A
1d hl 50028 33 109 195 Put 50029 into HL
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inc hl 35 Increment HL

add a, 100 198 100 Add 100 to A

cp a, 100 254 100 Compare A with 100

Jrc 8 56 9 If A<100 jump on

cp a, 200 254 200 Compare A with 200

Jrnc 6 ., 48 6 If A2200 jugf on

ld (hl) 77 54 0 Put 0 into addr

djnz -15 16 241 Jump -15 bytes if
count not zero

Jjr 3 24 3 Else jump 3 bytes

ld (hl) a 119 ld HL addr from A

djnz -20 16 236 Jump -20 bytes 1f
count not zero

ret 201 Else ret [to BASIC]

The DATA lines for the program should be changed to
contain the bytes shown in the above listing. When
it is run the numbers inserted into 50030 and above
are as follows : 0, 207, 51, 0, 251, 95, O, 39, O, 239,
etc. There are no values between 100 and 200, which
was the intention. If it were for actual use the
ggo§ram could be made much more elegant, but this

elegant version 1is easier to follow (which 1is
usually true).

Strategy of the sub-r

Call the content of A ; (a). The strategy of the
routine is that during each loog (a) is compared with
100 and if it is found to be less than 100 then Cy
will become set and a jump made to the 'ld ¢hl), a’
instruction. If (a) > 100 then a second comparison is
made, this time against 200. If this does NOT set Cy
(because (a) > 200) then again a jump is made to ‘ld
¢hl), a’. For all other values the program goes to
1d ((hl) O°. Whichever route is followed, when the
count reaches zero then the program ends.

Instructions and bytes

It is as well to bear in mind that it is the bytes in
memory that cause an m/c program to have its
effecis. The processor reacts only to bytes and
roduces only bytes. The mnemonics ‘are not

structions, though for ccnvenience we speak of them
as such. ?hey are no more than what their name
suggests; a reminder and a summary of the
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instruction that their assoclated bytes bring into
action.

Most m/c instiructions require 1 or 2 bytes. Some
require 3, and a few require 4. None require more
than 4. In all 1-byte instructions the byte is
called an opcode (short for operation code) because
it is a code that leads to the Z80 performing the
specified operation.

In many 2-byte instructions the two bytes make up
the opcode (le. 1t takes two bytes to specify the
operation concerned), though some consist of an
opcede and a defined byte.

A defined byte (abbreviated to DEFB) is one that you
specify the value of yourself to suit your own
requirements. A defined word (DEFW)  is two
associated bytes (le. a High and a Low Byte) that are
defined b the programmer, such as an address.
Most 3—t3¥de instructions consist of an_ opcode and a

DEFW,; hl N N' for example. All the 4-byte
instructions that we will be using have two bytes as
opcode and twe as a DEFW. (For the sake of

completeness: a DEFM 1s a defined message, and a DEFS
ls a defined string. Both consist of a string of
ASCII codes.)

A slightly cut down set of Z80 mnemonics is listed
in Appendix 1 with their decimal opcodes and the
number of DEFBs required. These should be used when
compiling for the BASIC insertion program. DEFBs are
shown as an 'N', and DEFWs by N N°.

You can of course use any of the instructions in the
set but some that I haven't listed are tricky because
of the way in which the CP/M operating sysfem has a
grior claim on them. It is not a good idea to use
he 1index registers nor the alternate registers, and
the instruction ‘halt' is not to be used. CP/M has
its own way of sorting out the interrupts. I have
restricted = programming to the registers and
mnemonics described in the text and have been little
inconvenienced by this. From now on I suggesi you
make a point of using Appendix 1 to_ compile and run
as many test routines as you can. In the course of
this, problems will inevifably occur, but it is in
finding the causes that you will increase your skill
as an m/c programmer, and having a project that you
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really want to get to grips with is worth any number
of ‘'five-finger-excercises’.

Using an Assembler

If you are intending to buy an Assembler then the
following brief description may be of help. TheK are
not all alike so full details are not possible, though
the basis of their use is fairly standard.

The Assembler version of the mini-routine might look
something like the following (but with the addresses
and a byte-count down the left side):

org equ C(C350h
count equ 7
first equ 10
addr equ C364h

start ld b count
ld a first
ld hl addr
loop ld (hl) a
inc hil
Inc a
djnz loop
end ret

The words ‘'start', 'loop’, and ‘end' are labels that
mark places within the listing.

First you specify where you want the program to be
laced in memory by an 'org' (origin) instruction, and
hen define the variables you require, as by '99 =
fred' or 'fred equ 99'. All future uses of 'fred' will
then imply this value. A convenient feature is the
use of ‘labels' which name locations within the
grogram so that jumps tc them can be made without
he” programmer needing to count the displacement.
You can also insert notes (like REM statements) to
explain features of the routine.
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Practical Programming

The cardinal and most worthy rule of computing is
that dpro%amming always starts with an algorithm and
the drawing of a flow diagram. An algorithm is a
‘logical route' by means of ~ which the program is to
achleve its objectives, and the flow diagram shows
the sequence of the operations that it will follow.
The better class of dlagram employs the standard
sgmbols that have been agreed for this purgose;
choices are put into diamond-shaped boxes, operations
into square ones, etc.

Short routines of the type we have been discussing
hardly need such thorough treatment, though it 1s
obviously a good idea to start as you intend to go
on, and practice with a desirable technique is always
itself desirable, though in all conscience I feel 1
should say no more about algorithms because I use
them very rarely and tend to have more trouble with
getting them right than I do with assembling a
program 1in cold blood, but don't be put off by me.

My approach is that if I can conceptualise a sub-
routine quite clearly then I get straight on with
assembling it, and only if I am unable to grasp its
logical niceties with exactitude do I get down to
glanning it out in this formal way. This leads me
nto the ultimate computing sin of "drawing-up a flow
diagram only after have made a bindles of the
rogramming - and they drum you out of the
orshipful = Soclety of Computer tudies for far
smaller crimes than that; though not being a member
affords some protection of course.
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A %enerally agreed approach that I do regard with
enthusiasm is that of splitting up a large program
(and even a not so large one) in/to well defined tasks
and making each of these into@sub-routine that is
called from a ‘central’ or ‘executive’ routine. This
1s in any case necessary if any of the sub-r's need
to be called from moré than one location, perhaps
even from within each other. The ultimate
development of this would be that the executive
routine consisted of nothina but a sequence of ‘call’
commands terminating with “jr start’, though I don't
recommend aiming for this unless there 1s a well
thought out justification for 1it.

If I have any regard for flow diagrams it is for
their value for sorting out the executive routine,
though I think they need some kind of perking up so
that you can more easily follow the 'jumps’ and the
‘calls’, and discriminate between them.

Library Sub-routines

Each program gives rise to its own particular sub-
routines, but there are some that can be used more
or less unchanged in program after program. Good
examples would be the arithmetical procedures such
as multiplication and division, which are likely to be
needed in a wide variety of applications. There is
no point in work them out afresh for each occasion
so once this has been done they can be stored for
future use. In this way a gro rammer builds up a
library of procedures that sult his needs, and usin
ones devised by other people 1s seen as sensible no
plagiaristic provided you give credit when it is due.

I started my library on disc, each sub-r being stored
separately under 1its own name, but I soon found this
to be cumbersome and 1 abandoned the idea. I now
keeg the most useful ones alongside my assembler
routine so they are all inserted into memory at the
same time, it being much easler to erase unwanted
ones than to go searching for those that are needed.

I also find it essential to keep a written version of
everything in a loose-leaf binder so that the details
can be looked up and the need for modifications seen
at a glance. owever accessible information on the
screen may be, there is something a bit more readable
about paperwork.
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Organising the Memory

The first Jjob when I start a new venture is to
allocate re%mns of memory to the various duties that
will need it. These are usually:

Variables (data, especially the results of
calculations)

Major strings (long phrases and pages that will
be printed or screened)

Minor strings (short phrases, words, and print
instructions) .

Major rout)ines (usually those user-selected from
a menu

Minor routines (usually those called by the
above)

You may also require storage areas for data of a
non-variable kind, and for ~temporary records that
will eventually be filed.

It is better to assess the memory requirements of
these various duties fairly generously at the start
because 1if they over-run their allotted areas then
ou will have to move everything to make room.
ithout doubt the room requireéd by the strings will
be far more than you expected, so alocate them plenty
of space. I tend to be mean and try to shoe-horn
everything into the least memorq so none 1s wasted,
but ‘don't” be tempted by this. f it turns out that
you were over-generous then you can move everythin
Closer together when you have finished if you wan
to, and that gives a much nicer feeling than leaving
out features that should be included just because you
don't want the labour of shifting something so you
can fit them in. Moving things always means
changing lots of addresses and that can be laborious
even 1if you have been shrewd enough to access
everything’ through jump-tables. (See Appendix 8.

All working programs put information of some kind
into memory through the actions of their sub-
routines, and as with everything in computing there
are two irreconcilable views on how this should be
organised. One view is that data should be placed
close to the sub-r that preoduces it so that the
relationship between them can be seen more easily.
The other is to keep all data in a single reserved
data area regardless of 1iis source. aving tried
both I tend to prefer the second on the grounds that
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sub-routines frequently use each other's output and
having the data all in one place makes it easier to
keep track of. Though, Jjust to be contrary, I
sometimes do it the other way because in ‘that
particular application it seems to meet needs better.

The so called varilables make up this data. Even if
there 1is no program need for a sub-r to put
information into memory (1t could pass it on in the
registers), there is still an advantage in using
memory storage, even 1f only temporarily, because
bytes inserted into memory can be inspected at
leisure and the accuracy of the routine producing
them assessed, but data kept in the registers 1is
immediately overwritten by later activity so you
can't interrupt operations fo discover it.

Having apportioned memory, I then rule a sheet of A4
with columns read¥ to receive the addresses and the
names of the varlables that I will generate during
the programming. I make a point of providing them
with a whole e, which 1is invariably more than
enough. (A computer ‘page' 1s any block of 256
addresses that starts with a Low Byte of zero.) I
also give each varilable the address(es) it needs
solely for its own use, le. I rarely share an address
between two varlables even if it seems that there
could be no clash between them. You never know how
the program will develop later, and there will be
confusions enough without generating uncertainty
about which number it 1s that you are looking at.

I also try to allocate an easily remembered High Byte
to the variables addresses, and put the important
ones in first. It is surprising how this aids memory,
and that, together with only a single record sheet to
inspect, cuts out much 1laborious thumbing through
endless sheets of program details to remind yourself
of the address at which something crucial is stored.

Attention to seemingly trivial points like these can
quintuple the ease and gle&sure of writin*g grograms,
and ignoring them can have the same effect on the
late-at-night-exasperation index. :

Programs vary vergn widely in their need for strin&s.
Calculational routlnes may need little more than the
ability to report the results, but in interactive
ones, where there is a lot of correspondence with the
user, strings may occupy more memory than any other
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feature, and you can be sure that ALL your
programs will need strings for error-reporting.

So certain 1s this need that your error-handling
routine and the strings assoclated with 1t are
excellent candidates for your library. (At least the
user may have to be notified that a disc is full or
that he has pressed the wrong key; see Chapter 13.)

The PCW's memory plan

The PCW's operating system 1s CP/M which requires
two sections of memory for its own use. The first
is page O (O00Oh to OOFFh, le. 0 to 255 inclusive) so
this Is not available to the programmer.

The highest memorY address plus FFFF (255, 255)

1 that is available 1is recorded

at 0006/7h, and insp-ection CP/M

normally yields F606h or

(6,246). This address and those F606 (6,246)

higher are used by CP/M and Loadg

hence are never available. (The Progr

gresence of an RSX program will F280 (128,242)

e recorded by a change in this

stored address.) In" addition,

memory down to about (128,242)

is used during Yrogram loading *WJ
0 a 7

S0 you canno a program
that” would extend above is, Basic
but you can use this region Proar
once the program 1s in. en i
Mallard BASIC is in place it 7496 (150,122)

occupies from 0100h fo 7AS6h
(256 to 31382), not including
any BASIC lines that you may
have programmed in.

The CP/M stack grows downwards 0100 1N

P/
from F600h [ie from (0,246)] —_— 0,0

O - D > ®

The memory areas available for
program use can therefore be
summarised as:

The memory plan

BASIC in place from 46080 B400Oh (0, 180)
to 61440 FOOOh (0,240)
BASIC not in place from 256 0100h (0O, 1)

to 61440 FOOOh (0,240)
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The lower limit with BASIC in place will naturally
depend on the size of the BASIC program. You can
have 1t calculated for you by entering the BASIC
command: print himem - fre("")

'HIMEM' is either the address at the top of the TPA
(see the next paragraph) or the address in the last
'CLEAR' instruction” if one has been used. (The
definition of HIMEM given in the manuals is garbled.)
FRE("™') gives the number of bytes of free space from
the top of the BASIC program up to HIMEM. Hence
subtracting one from the other gives the address at
the top of BASIC. My uyfer limits are cautious but
they still make 15k avallable when BASIC is in, and
nearly 60k available when it is not.

The operation of CP/M

Page O (le. 0000Oh to OOFFh) is used by CP/M for the
Z80 restart areas it contains and also for storage of
its own system variables. The area above this up
to F605h 1s called the TPA, which stands for
‘Transient Program Area’. This 1s the area in which
all user programs are placed (including BASIC and the
ones you write). The area above the TPA, le from
F606h” up to FFFFh, is occupled by the main CP/M
systems which are referred to as BIOS and BDOS.
These stand for Basic Input/Qutput System, and Basic
Disc Operating System, ut are not related to the
language °‘BASIC'.)

Using BDOS

Most of our m/c contact with CP/M will be through
BDOS, which contains a large number of functions
(sub-routines) that allow the PCW to work as it does
and which are available for our use once we've sorted
them out. You select the one you want by puttin
its BDOS function number into the C register, an
then you call the address 0005h; ie (5,0). At the
same ~time DE 1is usually loaded with additional
information that BDOS may require such as an address
at which to find something. (Using BDOS is described
in Chapter 7.
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Program speed

Each of the Z80 instructions requires a specific
amount of time for its completion. This time 1is
measured in 'T-states®' or ‘clock cycles’. The length
of a T-state is determined by the speed at which the
computer's internal clock is set to run (the ‘clock’
is an oscillating crystal), which in the case of the
PCW is 4 million pulses per second, thus setting the
len%th of a T-state to 0.25 micro-seconds. So short
a time mag seem too little in which to achieve
anything, ut as micro-processors measure their
internal events in nano-seconds (thousandths of a
micro-second), then even a fraction of a micro-second
seems llke a lazy morning to it. See Appendix 2.

As with BASIC, alternative m/c groqramming routes are
almost always avallable an t 1is " usual for
inspection of a completed program to show that
savings can be made in its run-time. This can be
important in routines that involve a large number of
re-iterations; if a single calculation takes a
thousandth of a second (a long time in m/c terms),
then saving half of this will not be noticeable to
the operator, but if the apglication is to repeat the
sequence a million times then the saving would cut
the run-time from nearly 17 minutes to only 8.

In addition - to these practical considerations,
programmers generally take pride in producing the
mosi elegant program. ‘'Elegance' is not so easy to
define, but it is something along the lines of ’'style’
in design work, though its most noticeable paramefers
are those of compactness <(economy of the use of
memory space) and speed. However, the pursuit of
speed is best carried out after the program has been

shown to run properly. Effectiveness outranks
elegance by several battalions, and as I once heard
it expressed; "“However ashamed you may be of the

engine, you can take comfort from the fact that
drivers never look under the bonnet."

It 1is often counter-productive to opt for methods
simply because they are fast. Fush de works nearly
twice’ as fast as 1d (Addr),de, but recording the
content of DE for future inspection may be worth any
number of saved micro-seconds. And if the sequence
onto and off the stack turns out to be inconvenient,
then you may spend more time in revamping it than
has been saved.
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Unless you are programming something very special
indeed then you have my personal guarantee ‘that your
original un—cleaned—u% as-written version will "run
uite fast enough. he search for speed is a bit
ke insisting “that a hi-fi should have linear
responses In the ultra-sonic range as well.

M¥ apocriyphal story about 1t concerns the five
minutes once spent making sure that a sub-r was
working at absolutely peak revs, only to notice on
completion that it was a procedure that arranged for
the program to stop to await a key-press !

Whilst your own m/c sequences will be fast enough in
all normal meanings of the word, CP/M 1is a highly
complex set of interacting sub-routines and calls to
it ma invoke thousands of unseen operations.
Natura 1{ these take time. The print instructions
are particularly involved and economies made with
them will be noticeable. It 1s much quicker, for
example, to move to a print-position in a single
bound than to crab across the screen to it one
column at a time.

Outputting text through the printer seems fast in
typing terms but it takes infinitely longer to print
a character than it does to transfer one to the
printer buffer, so the processor 1is kicking its heels
during most of the printing operation. If instead of
rint g a long pilece of text all in one go you can
eed it in chunks of say 256 bytes at a time, then
you mag be able to process other batches of work
while the physical printing is taking place.

Care with program writing

If you are to use an assembler then its paperwork
should give detalls of where its own routines reside
in memory, and where you can order your own to be
written. It will also store the named variables to
suit itself so you won't need to define a separate
variables area in most cases.

If you are to use BASIC in the way described earlier
then you can isolate %lour programming area by the
“Clear, ADDR" command. Naturally this address must be
above the highest address that your BASIC program
has need of or the two will try to overwrite each
other. Although this is such a simple principle, you
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will suffer a lot of frustration from not attending
to it properly. Even if the CLEAR command is in the
program it must be RUN to have any effect, and if
gou add to the BASIC program then you may need to
LEAR to a higher address. You can find out how
much room 1s available above the BASIC program by
entering: print fre(")

Whatever the means of writing 1it, you must ensure
that in operation the m/c program does not insert
anzthin% nto the restricted areas; those occupied
either by CP/M, by the Assembler, or by the BASIC
insertion program. If this hacﬁ)ens (because a sub-
routine has miscalculated an address, say) then these
programs will no longer be reliable and at best the
system will operate unpredictably. It might even
cgrﬁupt your discs, so release them when there is any
risk.

Friendly Advice
(based on lots of personal experience)

I have to admit to being not a little ashamed of
some of my own reactions to inexplicable errors. It
1s the easiest thing in the world to curse the
machine, its makers, Zilo§, the author, Caxton, the
cat, and the government for conspiring against you
when some detail will just NOT come right. In my
case it was always me that had made a booboo, and in

our case 1t will be you. The number of BF errors

hat you will make will astonish you, and I still
haven't found the answer to the pitfall of readin
into a listing or intc a pilece of text the thing tha
I expect to see there.

If you give the Z80 a glood set of input bytes then
it will respond unfailingly with a good set of output
bytes, but if you make a mistake it has no way of
knowing that you intended something else and will
always assume that you are as infallible as itself.
Checking over your m/c programs before you use them
is the only way of revea in§ errors 1in good time.
After all you are s%eaking directly to the heart of
the computer, and, having bypassed everyone else’'s
pro§ramming, there are no friendly error messages
avallable, and no-one else's housekeeping to take care
of you. 100% accuracy with your input will therefore
be Just about enough.
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A usual effect of a program error is ‘lock-up'; ie.
the computer no longer responds to the keyboard and
your only option is to fu 1 the plug out and start
again. Even 1if there 1s no lock-up, if something
totally unexpected occurs (the screen may become
sprinkled with ibberish, say), then you should
restart even if there seems no need because you will
have no 1dea what other mischief has been done. It
is better to stop, clear the computer out and reload,
rather than soldier on with unrellable material that
382’ héave been corrupted in ways that you can't easily
etect.

For this reason 1t is essential to put every m/c
program onto disc before trying 1it, otherwise you
could lose several hours of programming effort when
the program crashes. Even cases where you have
made only a slight modifications, record the’ program
again before using it. Otherwise you may lose your
modifications and not be able to remember what they
were,

With larger programs I make a rule to have at least
one unused ‘pure’ copy on disc - one that I know has
not been run and therefore can't have been corrupted
bK hidden errors, but there is obviously a limit to
the number of back-ups you can keep, and iIn this
application “the more the merrier" is NOT true. If
you keep too many taken at different stages in the
development of a program then you'll forget in what
ways they differ and be worse off than if you'd kegt
only one of whose history c‘you are certain. At the
time, keeping written records seems tiresome, but if
a problem arlses a week later you'll be glad you did.
The best policy is to devise a system of your own
and stick to 1it. Professionals frequently use a 3-
%eneration “Grandfather, Father, Son" system. ‘Son' is
he latest version, and a ‘'grandfather' is discarded
when each 'son' is born.
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Screen printing

The character set

The complete set of screen printable characters and
their ASCII codes is given in the PCW manual on pages
113 to 118 [547 to 554]. Those with codes larger
than 31 can be printed directly by the methods
described below. convention ASCII codes smaller
than 32 are reserved for use as control-codes and so
are not available for direct printing, but indirect
methods are available (see Chapter 9). Also by
convention the word "print" means ‘'display characters
on the screen', as opposed to "list" which means
‘print onto paper’. hen printing or 1listing, CP/M
will ignore a code that it can't interpret.

The BDOS functions

In this chapter we will start to use the BDOS
functions, the most interesting of which are
summarised in Appendix 4. The first and simplest is
BDOS N2 0, which has the name "System Reset". Itis
effect 1s to clear out any traces of previous
operations, and reboot the system (see page 126). It
could be brought into action from m/c as follows :

ldco - 140 Load C with fnc Ne
call BDOS 205 5 0 and call 1t.
BDOS is always used by calling 0005h after loading C
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with the required function number. For many
functions it 1s necessary also to load DE, usuall
with an address. Frequently BDOS reports back wit
information that you will find in A or in HL or in
both, though in the case of function N@ 0 no such
report is made, and no DE address 1s required.

Function N2 12 has the name "Return Version Number®.
('‘Return® means "“report back with".) After callin
this, H will be found to contain zero with the CP/
version number in L. For version number 2.15, L will
contain 2Fh, and for version 3.0 it will contain 30h,
etc. Neither of these two functions 1is of much
practical interest, but they illustrate the approach.

Keyboard Input

In contrast, BDOS function N2 1, called "“Console
Input®, 1s very interesting. It makes the program
awalt a key-press (the ‘console' is the keyboard) and
then puts the ASCII of the pressed key 1Into A. If
it 1s a printable character it 1s also printed onto
the screen at the currently established print
position (see pages 70 & 71). " Some of the control
codes such as B are also echoed on the screen,
though others are not. To test the function, insert
the following byte sequence and run it:

ld c I 14 1 Await a keypress
call BDOS 205 5 0 then put 1ts

ld (50020)a 50 100 195 ASCII into 50020,
ret 201 And finish.

This little sub-r awaits a key-press and when one
has been made it loads the content of A into 50020.
After each RUN, press a key and then use 'PRINT PEEK
(50020)* to observe the ASCII code of the key you
pressed.

In some applications it may suit your purpose to
ignore the value in A and use the function merely to
halt the program whilst the user reads a message
before pressing a key to continue.

Alternatively, by testing the value returned in A, the
function can a&allow the user to pick alternative
courses of action, or 1t can prevent access tc a
rogram unless a correct key sequence is typed in.
he  following sub-routine’ causes a jump to
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‘Program 1' if "y" (for 'ves®) 1s pressed or to
‘Program 2' if *n' (for ‘'no") is pressed, and prevents
further action if no key or any other key 1s pressed.

ld ¢ 1 14 1 Function N2 into C

call BDOS 205 5 0 & bring Into action.

cp "y 254 121 If ASCII is 121 (y)

Jp z Progl 202 Pl Pl then jp to Frogl.

cp "n” 254 110 If ASCII 15 110 (n)

Jp z Frog2 202 P2 P2 then jp to Progz.
-17 24 239 Else repeat.

L
Using BDOS corrupts (changes) the contents of
virtually all the registers so you can't be sure what
is left 'in C after such use and it is necessary to
jump back to 'ld c 1', not just to ‘call BDOS"®. If
you need to preserve the contents of a register or
of a register-pair whilst BDOS is being used, then
‘push' it before calling BDOS and ‘pop' it afterwards.

' Numacc"'

Function 1 can be used in interpreting numbers typed
in at the keyboard. The first requirement 1s to

reject all unacceptable keypresses . The following
sub-r does this so we will call it 'Numacc'.
Start:
ld ¢ 1 14 1 Await a
call BDOS 205 5 0 key press.
cp 48 254 48 If the ASCII(48 then
Jrc 6 56 6 Jump to repeat,
cp 58 254 58 If ASCII > 57 then
Jr nc 2 48 2 jump to repeat.
or a 183 Else reset Cy,
ret 201 and leave the sub-r.
Repeat:
ld e 8 30 8 Put 'backspace' 1In E
ld ¢ 2 14 2 and print 1t
call BDOS 205 5 0 (see page 64).
Jr -24 24 232 Jump back to Start.

The sub-r can be extended to make it accept other
useful keypresses such as decimal-point, Return,
Exit, etc. and to set and reset the flags in a way
that will make 1t clear which of these, 1if any,
has been used. For example, if it returns Cy set
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only when Return 1s pressed, and Z set only when
Exit 1s pressed, then testing the state of the
flags will indicate whether the user has hagpily
completed his entry or whether he abandoned it and
the input should be disregarded.

Other key-press functions

If you want the pause provided by function N2 1 and
the  ASCII of the pressed key, but you don't want a
character to be printed on the screen, then follow
function N2 1 by a sub-r to print ‘backspace’ then
‘'space'. If gou merely want to record the pressing of
any key without recording the ASCII, then use
function No 11 ("Get Console Status"). This puts
zero into A if no key has been pressed, and 1 into A
if any key has been pressed. f you follow use of
the function by ‘or a' this will give Z set 1if A
contains zero, so Z set means ‘'no key pressed’.

More complex situations can be dealt with. Suppose
you want no pause in the program if no key has been
ressed, bul you want to know which key it is if one
as been. This can be dealt with as by:

l1d ¢ 11 14 11 If no

call BDOS 205 5 0 keypress

or a 183 then

Jr z PROGRM 40 N continue.

ld ¢ 1 14 1 Else call

call BDOS 205 5 0O function N2 1.
continue

If there is no keypress then the program continues
through the ‘Jr z'’, but if there is one then function
Ne 1 "will be called and it is very likely that the
same key will still be down when this happens. If it
isn't then the user will 1nvariab1¥ press again.
Function No 1 provides the ASCII of the pressed key
in A, so you can use it as appropriate.

There 1is another alternative. Function N2 6 ("Direct
Conscle Input/Output") requires E to be loaded prior
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to use as well as C. If you put FFh (255) into E and
then call N2 6, A will contain zero if no key has
been ressed, or 1ts ASCII 1if one has, but no
character will be echoed to the screen. 1f instead
of FFh you put an ASCII code into E, then that
character will be printed whatever key is pressed.

The books print bold italic warnings that you should
not mix Direct Console I/0 (such as N2 6) and other
consocle I/0 functions though it is not clear what
they mean by mixing. I have used the above routine
and then later used other BDOS functions without any
deleterious effect that I was able to detect.

Printing single characters

When you want to print a single character use
function N2 2. It prints the character whose ASCIIL
code you have loaded in E ; hence to print "?" you
would load E with 63 and C with 2 and then call BDOS.

Reading text from the keyboard

The functions considered so far have dealt with only
single characters though most occasions require whole
phrases from the user, as in completing stock or
personnel records, updating files, etc. Function N2 1
could be adapted to this, but I turn pale at the
prospect of writing a routine for it (including a
provision to erase mistakes .

Fortunately CP/M has our best iInterests at heart and
has provided BDOS function N2 10 which takes care of
ust these requirements. It is called "Read Console
uffer”. I would have expected it to be called "Write
Conscle Buffer®, but let's not haggle over detail.

In computerese a 'buffer' is a small area of memor
where bytes can be stored grior to bein% grocesse ;
The printer is provided with a ‘printer buffer' into
which the processor hurls ASCIIs fast enough to make
your head spin and which the printer subsequently
Blods through at the rate of one every now and then.
uffers are used to balance up the different speeds
of operation of different processes.

Once function 10 has been called, the program will
await the input of the text, which will be echoed
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onto the screen at whichever print-position is
established at the time. (See pages 70 & 710
Whilst typing 1t in, the two °'DEL' keys and the cursor
arrows are available for correcting mistakes. When
the text input is complete the user presses ‘RETURN'.
It is usual then to transfer the text from the buffer
to its permanent home. If the user tries to over-
f11l1 the buffer (exceed the size defined for it) then
a beep will sound and no more characters will be
accepted.

To use the function it is necessary to state where
you want the buffer to be located memory and how
many bytes you want to allocate to it, (le. how many
characters are permitted to be typeci into 1t) the
maximum being 128. The following sub-r illustrates
the case of declaring a buffer at ‘ADDR' which will
have room for 99 characters.

l1d hl ADDR 33 A A Buffer addr into HL
ld (hl) 99 54 99 Put length at start
ex hl de 235 of bufter, & move
ADDR to DE,
ld ¢ 10 14 10 then call the
call BDOS 205 5 0O function
continue .

89|11 F|R|E|D B/LID G| G|S
LLADDR+2 (Start of text)

ADDR+! (Count of characters)
L——ADDR  (Specified max length of text)

A typital Console Buffer

The total room required by the buffer 1s 2 more
bytes than the number of characters that may be put
into it, and the start of the text (its first letter)
is at ADDR+2. The address ADDR is occupied by the
authorised length of the buffer (99 in the ‘above

case). In addition, CP/M counts the number of
characters that have actually been typed in and
enters this value at ADDR+{. A handy way of

transferring the text is therefore
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ld bc(ADDR+1) 237 75 Al Al Put number of typed
ld b, 0 6 ¢ chars 1Into BC.
ld hl ADDR+2 33 A2 A2 Point HL to scurce.
ld de HOME 17 H H and DE to home.
ldir 237 176 Transfer.

contlinue . ’

Note that function N2 10 does not add a string-end
marker, so you must add your own if one is needed.
(See below.)

String printing

BDOS function N2 9 (called 'Print String" 1s available
for printing the strin§s of prepared phrases such as
menu-pages, program titles, user instructions and the
like. ese are made up of the ASCII codes of the
relevant characters. First DE 1is loaded with the
address of the start of the string and then the
function is called. The string may be of any length
but its end must be marked g a string-end marker
(‘delimiter' in w-lang> which by defaulft 1is the "$"
sign whose ASCII code is 36. If your string has not
been provided with an end-marker then when it is
printed gibberish will be added to the end of it
until the function comes across a "36" that happens
go ge lying about in memory, but no other harm will
e done.

Conveniently, as well as all the letters, numerals,
and punctuation signs, the string may contain a
varie of very useful printing iInstructions called
the CP/M escape—sequences (for accidental and
therefore not very good reasons that don't involve
escaping), plus control-codes such as

7: bel - the ‘'beep' sound.

8: backspace - move back one character.

9: tab - move the print position rightwards
to next column whose number 1s a
multiple of 8.

10:  line-feed - print at this column on the
next line down, scrolling up if necessry
13: carriage return - move to left margin.

The print control-codes and escape-sequences are
described on fagea 139-141 [581-584) of the manual,
the latter being listed as 'ESC X'. For m/c use this
translates to '27' followed by the ASCII code of X"
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So ‘ESC E', "Clear the viewport [screenl” translates
to ‘27 69'. In the few cases where this is followed
by a number shown in italics, the number is retained
per se in m/c.

The following routine is intended for insertion at
address 50,000 to display a string located at 50010
(90,195) so it can be run under the BASIC insertion
program described in Chapter 5.

1d de 50010 17 90 195 Point to string.

ld ¢ 9 14 9 Select 'Print string'
caltl BDOS ggg 5 0 and call BDOS.

re

The m/c b{tes for this and for the string are given
in the following DATA 1lines.

200 DATA 17,90, 195, 14,9, 205,5,0, 201
210 DATA 0,0

220 DATA 27,69, 27,889, 46,64

230 DATA 42,32, 84,104,105,115, 32
240 DATA 105, 115, 32, 87, 32

250 DATA 115,116, 114,105, 110, 103,32, 42
260 DATA 7, 10,10,10,10, 13, 36

Write these into the fr%%ram and run it. 27 ,69°
clears the screen. '27,89,L,C* defines the prin
osition according to the values of ‘L' and 'C'. L =
he line number + 32, and C = the column number +
32. If both are given the value 32 then printing
will start at the top left corner of the screen
(experiment with other values larger than 32 to see
the effect).

Changing the string—end marker

The PCW screen contains 32 print lines (N2 O to Ne
31), and S0 print columns (N2 O to N2 89). Hence
the value of can be varied from 0+32 to 31432,
ie. from 32 to 63. However, if you try 36 (=line
Ne 4) ou will find that your string is ignored.
This is because an error in the system grogramming
nistakenly interprets a line value’ of 6 ~ as the
ASCII code of '$', le. as the- usual string-end marker.
CP/M therefore frematurely thinks it has found the
end of the str n% and as a result nothing can be
printed on line N2 4 by this method. his may
explain why text on the PCW 1s so frequently seen
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scrolling up from the bottom; scrolling and bottom-
line printing are immune to the error.

A rather more wholesome sclution is to change the
string-end marker to one whose ASCII code does not
lile in the range 32 to 63. For this I use 255
because it is easy to spot and easy to miss 1if I
haven't included if. It 1s also the ASCII code of a
sgmbol I am not 1likely to want to use much in
strings (it corresponds to "“Equivalent to" and has
the symbol ‘=Y. ou might like to select your own
from the character set given between pages 113 and
118 [547 and 554] of the manual. Zero Is sometimes
advocated, but I prefer to use zero for blankin,
characters that may be wanted on some occasions bu
not on others.

The marker is changed by putting the required ASCII
code into DE and calling function N2 110. To set it
to 255 the sequence is:

1d de 255 17 255 0 Put ASCII into DE.

ld ¢ 110 14 110 And call the
call BDOS 205 5 © function.
continue .

If DE is set to FFFFh (255,255) and function N2 110
is called, then this is a request to CP/M to report
which marker is currently in use but not to make any
change to it. The code Is given in A.

If you chanfge the marker then all your strings for
use with function N2 9 must end with '255° (or
whatever marker you specified), and when you leave
our routine and return to either CP/M or  to BASIC
hen your last instruction must be to change the
marker back to '36' because all the strings used by
these two systems end with '36°.

Block printing

When function N2 S is used the whole string will be
printed. Function N2 111 allows ‘slicing', ie. the
printing of any part of a plece of text. Control is
rovided through a 4-byte long ‘character control
lock' called the 'CCB' to which DE points when the
function 1s called. The first two bytes of the CCB
specify the address of the first character to be
printed, and the last two specify how many characters
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to print (up to 65535MH. Obviously 1in these
circumstances no string-end marker is required. The
calling sequence would be to put the required data
into the CCB and then :

ld de CCB 17 € ¢C DE polnts to CCB.

1d ¢ 111 14 111 Call the

call BDOS 205 5 0O function.
continue .

Message Printing

The functions so far described require the address of
the text to be known beforehand. For handling a few
large-sized strings this is no problem, but many
progams require a surprising number of minor
str %_? (possibly several dozen) that vary from only
one character (such as ‘'bel” up to forty or fifty.
The problem with these is that 1if you pack them
together to save space then any alteration to an
early one means that all the later ones will have
their addresses changed, and if you have already
written lots of routines that call them at their old
addresses you will not be over the moon to have to
plod through making revisions.

I have found the best solution toc be the one that
requires only the order of the messages to be
recorded, not their addresses. To print such a
message its list N2 is put into A and the 1list is
then scanned until the correct one is found. The
only address required is that of the start of the
list, which is obviously also the address of the first
message; le. of message N2 0. The printing of a
message then requires only 5 bytes :

ld a MESNUM 62 N Messg number into A
call SUBR 209 &5 S & call print routine
continue .

The messaqg is located and printed by the following
print routine:

1d h1 LIST 33 L L Point to 1list
or a 183 If (A)=0 then
Jr z 11 40 11 no search 1s requrd
push af 245 Store the message N2,

continued on next page .
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ld a (hl> 126 Check each byte

inc hl 35 until a

cp 255 254 255 string-end marker
Jr nz -6 32 250 1s found.

pop af 241 Then recover the

dec a 61 messg N2 & decrmt 1t
Jr nz -11 32 245 If N2 not zero repeat
ex hl de 235 Else put messg addr
ld c 9 14 9 into DE and

call BDOS 205 5 O call 'Print String'.
ret 201

The print-position

The screen print-position always stays where the last
print operation left 1it, ie. at the end of the last
string printed. In using BDOS functions N2 9 and N2
111 and in message printing, 1t 1s possible to
include in the string an instruction de inin§ where
the text is to be displayed so the print position in
these cases can be guaranteed.

Naturally this 1is not possible for single character
printing, and some re-composed strings require
different print positions at different times. A
solution is to have in the variables area a short
‘position string' made up as follows (for example):

51217 (17,200) 27 DEFB

51218 (18,2000 89 DEFB

51219 (19,200) Ln Required Line N2+32
51220 (20,2000 Col Required Colm N2+32
51221 (21,200) 255 DEFB <(end-marker)

If the required figures are put into 51219/20 and
this sequence is then ‘'printed' as if it were a string
then the print-position will be transferred to the
location specified by it. This would be achieved by:

1d hl PRPOSN 33 N N Put print posn

ld (PRSTR)hl 34 19 200 into the string.
1d de 51217 17 17 200 Point DE to string.
ld ¢ 9 14 9 Call

call BDOS 205 5 0 'Print string’

continue .
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More about the Print Position

To keep itself orlentated CP/M counts the number of
characters that have been printed since the print
position was last at he left margin and
automatically puts the next one in the next column to
the right as it works through the strin§, and when
the print-line is full it moves to the left end of
the line below.

This 1s fine except that no-one thought to explain to
it that not all characters are printable (some are
control-codes or escape-sequences), and hence it will
get 1ts sums wrong and prematurely put your string
on the next line down if you do a lot of printing
without telling it to mind its own business.

To tell it thus, precede each print-position
Instruction with a 'I3" (=carriage return); in 1on§
strings you may insert several such 13s, all in fron
of position instructions. Each of them zeroes CP/M's
column-count and ensures that printing will be where
it 1is intended. The following section of a long
string illustrates the idea:

...b6,101,114,116, 13, 27,89,52,62,
70, 114, 101,100, . .

Note that, on its own, a '13' will also transfer
rinting to the left margin, but the immediately
ollowing print osition "instruction countermands
this effect when it is not desirable.
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Using the Printer

This chapter relates principally to m/c control of
the very flexible dot-matrix printer of the '8256' and
'8b12 " The somewhat 1limited possibilities of the
daisy-wheel printer of the '9512"' are explained from
page 555 of the manual onwards, though the general
principles of what follows applies tc both machines.

It 1s possible to switch the printer on from CP/M (so
that it echoes all that goes to the screen) by the
key sequence 1S 1P tQ. ~(When followed by a Iletter
the symbol “t" indicates the ‘'control' key which for
the PCW is given by ‘ALT'. Not to be confused with
312 which means 9. z

This sequence turns off the screen, turns on the
printer, and then turns on the screen again, which
complexity is needed. Later the same sequence turns
the’ printer off again. The method 1is not a
satistactory way of frintin§ because in addition to
the required text, all else that comes to the screen
(such error reports) gets printed too. Unwanted
control codes are sometimes alsc shown, together with
messages that I have never yet established the
source nor purpose of. And to cap all, the echoing
sometimes stops at times decided not by me.

You can also produce a ‘screen dump', ie. have the
current screen content printed-out (bit-mapped), by
simultaneously pressing 'PTR' + ‘EXTRA'. his 1s
useful for recording otherwise non-printable material,
though the print size is rather small.
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BDOS printing

Happily there is a printer version of the block-print
function. It is N2 112, and has the w-language name
of "List block to logical device LST", but fortunately
it gerforms very well in spite of that. The word
‘list’ is used to refer to gr ting via the printer, as
distinct from ‘print', which means ‘'display characters
on the screen’.

As with function N2 111, the printing 1s controlled
from a 4-byte CCB to which DE points when the
function 1s called. The first two bytes of it give
the address of the first character toc” be printed, and
the other two give the number of characters to print.
If the string does not end with a ‘line-feed' (10) or
a ‘carriage-return’ (13>, then the characters
desi§nated will be transferred to the printer buffer
but they will not be printed.

One or other of these two control codes is required
as a prompt to empty the buffer onto paper. The
2-byte character-count decides how many characters
will be transferred to the buffer, and "the position
of the prompt decides how many of these will be
rinted. = Those before the prompt will be printed,
hose after it won't, at least not immediately.

This makes makes it possible to Jjoin strings from
different sources together before they are printed,
but 1t also means that you have to put the E{omgt
where you intend or you will leave debris the
buffer 'that will become tacked onto your next print.
To print all of them, the count in the last two bytes
of the CCB should %ust include the prompt as one of
its count of characters.

Text control

The printer won't react to codes it can't interpret,
and one of these is 'bel' (7), but the following are
recognised :

8: backspace - move one column left.
9: tab - go to next col which is multiple of 8
0: 1line feed - scroll the paper up one line.
2: form feed — scroll page out of printer

3: carriage return - move to the left margin.

1
%
In fact there is little use for ‘carriage-return'
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except as a means of overprinting because ‘line-feed’
automatically causes the first character of the new
line to be printed at the left margin, as does each
new use of Function 112. On the screen ‘'backspace’
causes the next character to obliterate the last one,
on paper the two are superimposed.

The ‘line/column' escape-sequence (27, 88, L, C) 1is
ignored by the printer which obviously can print on
only the current line. Movement across the paper is
effected by using ‘TAB' or by inserting spaces into
the string.

There 1s supposed to be a means of halting printin%
if the bottom of a short 8paqe is detected but 1
doesn't work for me. '27 &' 1s supposed to set it
and ‘27 9°' to unset 1it. The sequence to give an
exact amount of paper-feed does work. This is ‘27 74
N' where N is in the range O to 216. If N = 216,
then one inch of paper 15 scrolled up; if N = 108
then half an inch is scrolled, etc.

Underlining

Text can be underlined by incorporating the escape-
sequence '27 45 1' into the string. The underline 1is
switched off by ‘27 45 O°.

Print style

The full range of printer control codes and escape-
sequences is given in Fages 126 to 135 (5611 of the
manual, but not all of them work (or perhaps I am
incompetent). The most flexible one 1s ’'Select Mode’,
through which a combination of different effects can
be chosen. These are :

bit Ne value effect
5 32 Double width
4 16 Double strike
3 8 Bold
2 4 Condensed
1 2 Elite (=normal)
0] 1 Pica (=smallish)
0 0 Normal

Thus to start printing in double strike the escape-
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sequence '27 33 16' would be incorporated into a
string. Any futher use of '27 33 X' in which bit N2
4 of X' was not set would cancel the double strike
mode. The bits retain their set/reset condition until
you change them, so the following escape-sequences in
a string would have the effects:

27 33 32 Start rinting double width.
27 33 40 Add Bold to the above.
27 33 2 Cancel the above, print Elite only

Draft/High Quality

High quality printing is §3ven by ‘27 109 49°, and
reversion to draft quality by '27 {20 48°'.

Italics

The italic versions of the numerals, the alphabet, and
the functuation signs are printed if bit N2 7 of the
ASCI1 code is set (de. if 128 is added to the usual
ASCII code). This works for all the symbols with
codes from 33 (21h) to 126 (7Eh). Not surprisingly
the normal ‘'SPACE' (32) looks much 1like 1its {italic
version, but for some reason neither 127 nor 255
give the "zero without slash" as promised by the
manual, nor its 1talic form. You get an ‘1' for the
first and a ‘€' for the second.

Printer graphics

For grintnx to the screen there is a useful set of
érap ics with ASCII codes in the range 128 to 159.
hese allow you to print borders and lines and
columns that tidy up the presentation of data quite
nicely but sadly they can not be printed directly
onto paper and the completely useless symbols tabled
on page 135 are offered as an alternative (see the
note at the foot of §a§e 134). However, 1t is
possible to print speclal characters of your own
devising through the printer, so you can reproduce
the missing ~“ones and others’ to your own
specification. You can even cover a whole page with
designs. And if you are up to the task of converting
a picture into binary digits then that too can be
reproduced on paper.



VA =) PCW Machine Code

When producingn printer graphics, the 8 dots of each
vertical line the graphic can be represented by an
8-bit number. Zero corresponds to the instruction
‘orint no dots', and 255 to the instruction ‘print all
dots’. The number 1 means 'print only the lowest
dot', and 128 means ‘print only the top dot'. All the
other numbers imply other dots or dot combinations.

For draft quality letters six such instructions are
enough to print 'a whole character, and as the dots
are separated by a dot-width the characters are 12
dot-widths wide. For the standard range of
characters the numbers required to reproduce the dot
patterns are stored in the printer's memory, and the
variations required to give the various printing
styles are taken care of by the firmware (built-in
and unchangeable programming).

To print a UDG (user-designed graphic) BDOS function
Ne 112 is used as described above but the printed
string should include the escape-sequence '27 75 6 O'
immediately followed by the six 8-bit numbers that
represent the graphic. = You can Increase or decrease
the width of the UDG by changing the value '6' in the
escaﬁe sequence, though this number must be matched
by the number of data bytes that follow.

The count in the CCB must include the four bytes of
the escape sequence plus the number of data bytes,
lus the number of any other characters that are to
e printed simultaneously. As always the string must
end with '10' if it is to be printed immediately, and
this counts as a character.

The above escape-sequence does not work with BDOS
function N2 111, ie. it will not print to the screen,
and the print control instructions that change the
style of normal characters have no effect on UDGs.

To print an 8x8 black square, an 8x8 hollow square
and a right-pointing triangle, the print string would
contain the following sequences respectively:

.++«27 75 & O 255 255 255 255 255 255 255 255...
...27 75 8 0 255 255 195 195 195 195 255 255...
...27 75 8 0 255 255 126 126 60 60 24 24...
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Double density UDGs

The dots of a UDG can be packed together at double
the usual density if the escape-sequence reads ‘27 76
N 0', followed by twice as many data bytes. This
reatly 1increases the blackness of the print by
alving the width of the UDG without affecting its
height. It enhances the appearance of the triangle
referred to above for use as a pointer. To obtain
black squares that are really black and really square
or black circles that are really black and circular
use 16 data bytes and print them at double density.

Full page graphics

Because a UDG can can be made to any width it can be
made wide enough to fill a fprint ine, and several
such lines could be used to fill a page, though when
printing UDGs there is no ‘'wrap' onto the next line;
any part of the UDG that does not fit between the
margins is lost <(though if it is followed by normal
characters these will be printed on the line below).

Hence a separate print instruction is required for
each picture line. To fill the 90 print columns
requires 540 data bytes at normal density, or 1080
at double density. These counts are achleveable
because the last byte in the escape-sequence (usually
zero) 1s the high byte of the count. The byte
sequence for a full line-width UDG (90 columns) will
therefore be :

Single density 27 75 28 2 .
Double density 27 76 56 4 .

Library symbols

It is a simple and enjoyable matter to construct
print symbols for practically any purpose. If these
are kept in their own area of memory, a grogrammin
project that is Ilikely to use them can be equippe
with sub-r rather like ‘Print Message' as described in
the last chapter, though in this case the string-end
marker would be superceded by a convenient character
such as 'SPACE' (32, 20h).
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An‘example program

The following program illustrates the points made in
this chapter by printing a string of characters and
then several UDGs. The routine 1is for insertion from
address 50,000 onwards.

Sub=r:
ld de 50010 17 890 195 Point to the CCB.
ld ¢ 112 14 112 Call the
call BDOS 205 5 0 rint function.
ret 201 eturn to BASIC
DEFB

CCB:
DEFW 895 195 Address of string.
DEFW 65 0 String length.
DEFB o

String:
DE, 65 66 67 9 68 69 70 9
DEFS gg gg 32 74 75 76 32 27 33 40 77 78
DEFS 27 75 10 0 255 255 24 24 24 255 126

60 24 24 32
DEFS 27 76 20 0 9 9 133 197 7 51 15 15
15 255 31 15 15 15 51 7 1587 133 9 8

DEFS 27 33 0 10

The compiled assembly language version 1s given so
that the bytes can be transferred into data lines N2
ZOOliet seq of the BASIC insertion program suggested
earlier.

‘List Output®

There is a second BDOS function that can be used in
conjunction with the printer. This is function N2 5,
'List Output', which 1s somewhat similar to N2 2
'‘Console Output'. It transfers the ASCII code that is
in the E register into the printer buffer. Obviously
%rinting text by this means would be laborious, but,
he function can be used to add extra letters or
control codes to a string already in the buffer, from
where they will be printed as part of the main
string.
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If you want to prove that

‘List Output' does work,

and

run

put the printer on-line

sequence :
ld e 83
ld c 5
call BDOS
ld e 79
ld ¢ 5
call BDOS
ld e 33
dd ¢ b
call BDOS
ld e 10
Ild € 5
call BDOS
ret

30 83

14 5

205 5 0
30 79

14 5
205 5 0
30 33

14 5

206 5 0
30 10
14 5
205 &
201

(o)

the

following
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Screen Graphics 1

Special characters

For normal printing to the screen the character get
is limited to those listed on pages 113 to 118 (547
to 5541 of the manual, but excluding the ones with
ASCII codes 1less than 32. By convention these low
numbers are reserved for control-codes and therefore
don'tt rint, even though few are actually in use as
controls.

The remaining 224 give a wide range of choice that
covers most standard requirements, though inevitably
many of the characters with foreign accents are of
only occasional if any interest. Al the same time a
user may require a number of non-listed specilal
symbols to suilt his own purposes; ‘Locoscript', for
example, uses custom—made signs to indicate inset-
paragraphs and the location of paragraph-ends, to
name only two.

One of the advantages of controlling print operations
from m/c is that symbols to suilt virtually any
requirement can be Iincorporated intoc the character
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set and then grinted in the normal way by using BDOS
function N2s 1, 9 or 111. This is done by alilerin
the pixel pattern associated with a particular ASC

code (the pixel pattern is the set of light-dots that
make up the shape of the character when it is
displayed on the screen), and to make the alteration
it 1s necessary to gain access to the area of memory
where the patterns are stored.

Memory Banks and Blocks

As indicated in chapter 2, the Z80 can address onl
65536 (64k) memory addresses, though in fact the PC
is provided with’ either 256k or 512k of memory
depending on the model. So large a storage capacity
§reat1y enhances the machines’ ability to manipulate
he data required by complex programs, but because
the processor can't have access to all of it at once
it has to be split into segments.

A convenient subdivision is inte blocks of 16k, so
that four of these constitute the amount of memory
that the Z80 can deal with at one time. More than
four 16k blocks are installed in the machine but they
are ‘switched into circuit’ only when the processor
has need of the information they contain. Each set
of four in service together 1s called a bank. Hence
each ‘'bank’' consists of 64k.

The blocks are numbered from O to 15 for the ‘8256°,
and 0 to 31 for the '8512' and '9512', though the
blocks in a bank are not usualljt/ in a numerical
sequence. Block N2 7 1is given the name ‘common'
memory because it is in service in all banks. It
provides an area in which co-ordinating instructions
can be placed. These remain in force regardless of
which bank is in use; 1if this were not so it would
be impossible for different banks to apgly themselves
to the same task. The contents of the various
blocks is as indicated on the next page.

The banks are also numbered from O upwards, and
within each bank the addresses always follow the
standard range of 0 to 65535 (0000h to FFFFh).

What 1s stored in a memory bank 1s not changed by
the action of it being switched into and out of
circuit. Its contents are continually refreshed by
the normal interrupt sequence that the machine uses
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to ensure that no information is allowed to leak
away from its memory.

The Memory Blocks

Block O A BIOS jumpblock.
Block 1 Most of the screen pixel data
(the record of which pixels are
‘on' and which are ‘off').
Block 2 The screen—character shape data,
Roller RAM, and some of the screen
ixel data.
Block 3 I0S and BDOS routines.
Blocks 4-6 Most of the TPA.
Block 7 The upper part of the TPA plus the
resident part of BDOS & BIOS (at
F606h and ug; see Chapter 6).
All of which is ‘common' memory.
Block 8 CCP, disc hash table, data buffers
arts of BIOS.
Blocks 9 up he 'Memory Disc' (see Chapter 11)

(For details of memory switching see chapter 11 and
Appendix 7)

'The screen environment'®

There 1s also a special bank that is not given a
number but is called 'The Screen Environment®. The
blocks that are in service in the various banks,
including the Screen Environment, are as follows:

Start address Screen
Hex R.Biro Bank 2 Bank ! Bank O Envr
CO00 (0,192) 7 7 7 7
8000 (0,128) i 6 3 2
4000 (0,64) 8 5 1 1
0000 0,0 = 4 0 0

Bank 1 we have met before; 1t contains the TPA, ie.
those sections of memory that are occupled by user
rograms (it 1is the bank that is made available when
%be machine 1is ready for use), but switching the
Screen Environment 1into service is of particular
interest to us now because it is the onlg one that
glves access to block 2 in which the data for the
shape of the screen characters is kept.
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Accessing the Screen Environment

The Screen Environment 1s switched-in by the ‘Screen
Run Routine’, which itself is accessed through the
Extended BIOS Jumpblock in block 0. Because this
block is not in service at the same time as the TPA,
user programs must access 1t through another
Jumpblock in Page 0 from which the address of the
‘Jmp-Userf' entry can be derived. This is easier to
do than it is to explain.

An example program
Compile the followin rogram, insert it at 50000,

and then run it. It changes the .4h& pixel pattern
relating to ASCII code 97 - the one that normally

displays the pattern for "a". When you have run it,
try typing in a line containing the letter "a".
START:

1d bc SUB-R 1 97 185 Point BC to SUB_R

call userf, 205 89 195

DEFW 233 0 Addr of Scrn Run Rtn
# ret 201 Return [to BASICI
USERFN:

ld hl (0001)42 1 O Addr W.boot into HL

1d de 87 17 87 0 Add 87 to

add hl de &b get 'Jp.userf' addr,

gp (hl) 233 and then fump to it.
SUB-R:

ld hl 47880 33 8 187 HL = Addr of 'a’

ld b &8 6 & Count of 8 bytes.

1d (hl) 255 54 255 Change all

inc hl 35 the bytes

dfnz -5 16 251 to 255,

ret 201 and return.

The 1listing 1is in three parts. The first part is a
kind of 'executive program', the second sorts out the
‘jump userf' address, and the third contains the
inigruction for making the changes toc the pixel
p2tiern.

Part 1 first loads BC with the address of the third
art; it is necessary to use BC for this fur ose when
he Screen Run Routine is bein§ called. t then calls
the second part, but within this call sequence is the
DEFW which 1s being used as an 'in-line parameter’.
An in-line parameter is data that is in the next one
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or more bytes that are 'in line with' (ie. immediately
following) the instruction in question. Consequently
the address of the Screen Run Routine 1is already
known to the ‘userf' function as the address it must
use when it begins its operations.

In part 2 the address contained in 0001/2h is loaded
into HL and 87 1s added to give the 'jump-userf'
address. A jump 1s then made to this address, but,
because of the unusual structure of the sub-r to be
found there, when this sub-r has done its work a
‘ret' 1s made to the lace after the ‘call' that
initiated the sequence <(which was ‘'call USERFN"; ie.
to the place marked by '#' in the listing. Because in
this case a ‘ret' is found there, a return to BASIC is
then made.

In the third part, the address of the start of the
pixel-pattern for 'a' is put into HL and then this
address and the seven addresses following it are all
loaded with 255.

Note that this program works onlz/ because being at
address 50,000 and above puts it intc common memory,
ie. at or above (0,192), 49152, or COOOh. Had it been
below COOOh then its third part would not be
accessible while the Screen Run Routine was
operating, the pixel pattern changes could not take
place, and the most probable result would be a crash.

Pixel patterns

The patterns of all the 256 characters listed in the
manual are stored in Block 2 starting at address
(0,184), 1e BB8OOh. The section of memcry containin
them is called 'The Character Matrix RAM'. (RAM jus
means ‘'memory’.) Each pattern requires 8 bytes
within the atrix RAM, so the pattern for = the
character whose ASCII code is O takes up the first 8
bytes, the pattern for ASCII N2 1 occupies the next
8, and so on up to ASCII N2 255 whose pattern is
géggﬁd from (248,191) to (255,191) ie. from BFF&h to

The Matrix RAM contains & bytes per character
because each one is displayed on the screen as a set
of & horizontal lines of dots. The first b{te
represents the top line of the character, and the
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elghth byte represents 1ts bottom line. Each dot of
light is called a ‘pixel".

The 8 bits of each byte signal the state of the 8
pixels on its line. Each set bit signals an ‘on' pixel
(@ bright dot), and each reset bit signals an ‘off'
pixel (no bright dot). A byte content of 1 gives an
on' pixel at the right-hand end of the 1line, 128
ives an ‘on' pixel at the left-hand end. If all the
its are set (byte = 255, FFh) then a continucus line
of 'on' pixels is signalled, and if all 8 bytes contain
255 then a bright rectangle 1is displayed for that
ASCII code. It 1is a rectangle rather than a square
because the pixels are packed closer together in the
horizontal direction than they are in the vertical
direction. The vertical pixel separation is twice the
horizontal separation.

After running the above program attempts tc print "a"
will display a solid reclangle, though this new
pattern will be overwrittien by the normal "a" pattern
whenever CP/M is again loaded intc the computer.

Using the Character Matrix RAM

To make up and use a new pixel pattern first select
an existing character that is superfluous to your
requirements and make a note of its ASCII code. "You
then find its address within the Character Matrix RAM
bK nultiplying the code by & and adding the result to
the start address of the Matrix RAM. A simple way
of doing this is :

1d hl ASCII 33 N © ASCII code intc HL

add hl hl 41 then

add hl hl 41 multiply

add hl hl 41 by 8.

1d de MATRX 17 0O 184 Point DE tc Matrix-

add hl de 25 RAM, add sc¢ HL pcints
te Char.

continue .

Once the start address of the character has been
found, then that and the next 7 addresses should be
loaded with the bytes that establish 1its new pattern.
The pattern can be most easily worked out by using a
block of 16x8 5cm squares on a sheet of graph paper
onto which the outline of the character is drawn.
Pairs of squares one above the other represent each
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pixel. Any square-;gair covered by the outline is
counted as a set bit, all others counting as reset.
Don't spend too long on the artwork as the result on
the screen is often surprisingly like or unlike what
you are hoping for so screentests are even more
(apropriate than in Hollywoocd. Also bear in mind that
‘41t may need to be 'underlined or otherwise match
ug with "the standard letters then the bottom byte
should be left as uncluttered as possible.

Printing the first 32 ASCIIs

If you fancy having available the Greek letters or
any of the other first 32 characters given on page
113 [5471 of the manual, then transfer the required
ones en bloc by means of an 'ldir' operation into a
higher lace in the Character Matrix RAM, thus
obliterating the uninteresting stuff that is already
there and taking over the ASCII codes relating to if.
Take care that the first addresses POKEd from and
into are really the starts of characters or your text
will end up looking like something from the original
"The Fly" (heads and bodies contributed by different
characters?.

The printer uses a different set of character
patterns so the changes described above make no
difference to paper-printed text. (see Chap 7.
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Screen Graphics 2

Drawing on the Screen

Blocks 1 & 2 also contain the data that indicates
which of the screen pixels are on and which are off,
so the screen environment is also the fath that gives
us direct control of what the screen will display.

The screen is 256 pixels high by 720 wide. As each
rint character requires a s%uare of 8x8 pixels
here are 90 print ceolumns and 32 print lines, though
the lowest line cannot normally be printed on because
ti)'clis)r'eserved for system reports. (See 'Status line'
elow

The first byte of screen data is (48,89) ie. 5930h in
block 1, and the last one 1is (47,178) ie. B32Fh in
block 2. However these addresses are arranged in the
way which best suits the printing of 8x8 characters
so they are not sequential across the screen. Each
screen byte represents a horizontal row of pixel-dots
and each sequence of 8 of these arranged one below
the other gives the data for a print position (a line
and column intersection®. The next 8 bytes cover the
next print position to the right along the same print
line. Thus the 90 columns of a whole print line are
defined by 720 bytes in a zig-zag pat.ern, and the
next print line down 1s defined by the next 720
bytes, etc.
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K ¥ Pere.
0 8 16
] 9 17
2 10 18
3 1 19
4 12 20
5 4 13 21 i
6 14 22
7 15 23

The sequence of addresses in a print line

There 1s a further complication in that a particular
set of 8 bytes do not apply to a fixed screen
position; to aid the process of text scrolling the set
always points to the same position within the text
wherever it 1s scrolled to. This procedure is
illustrated by the following %r%ﬁfam which is
intended for insertion at address 50000 b{ the BASIC
insertion program. It 1s very similar to the one
used for making modifications to characters.

START:
ld bc SUB-R 1 102 185
call USERFN 205 94 195
DEFW

233 0
ld ¢ 1 14 1 Awalt keypress
call BDOS 205 5 0 (Chap 7) before
ret 201 returning to BASIC.
USERF:
ld hl (0001) 42 1 0
1d de 87 17 87 0
add hl de 25
gp (hl> 233
SUB-R:
ld hl SC-ST 33 48 89 Screen addr to start
ld bc 720 1 208 2 Count of 720 bytes.
1d (hl) 255 54 255 #% Each byte to be 255
inc hl 35 Next addr.
dec bc 11 Reduce count,
ld a, b 120 and
or ¢ 177 check;
Jr nz -8 32 248 repeat 1f not zero.

ret 201 Return when filnished.
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When this is loaded and run it will produce a bar of
white across the screen, though I can't predict where
this bar will be because I don't know the state of
your ‘Roller-RAM'. If the bar is near the top of the
screen then press ‘'RETURN' a few times until it
scrolls out of sight and then RUN 500 to produce
another one nearer the bottom. Now change the '255°
indicated by ‘#*' to '85', then RUN again.

These changes and the ensuin§ reports will have
scrolled thé bar upwards, but In spite of this the
new (dimmer) bar will fall on top of the old one and
completely blot it out. Note that the two bars
appeared at different screen positions though the
addresses given for thelr creation were the same.
(Because of the 'await—ke;l' you need a key-press to
achieve a return to BASIC.

If by this means or otherwise the lowest line (the
'status—line® 1s written into, it will not normally
scroll up as the other lines do but it can be made to
do so by "PRINT CHR$(27)+CHRS (48)" or the
equivalent m/c print instruction (27 48' in a print
?triz ). The effect 1s reversed by changing the '48°'
o '49°.

'Roller—RAM’

‘Roller-RAM' 1s 512 bytes of memory starting at
0,182) 1ie B60OOh in block 2. It is rumoured to
contain the 256 addresses of the starts of the 8
pixel lines within each of the 32 print lines, and to
upg?te these every time they change due to a scroll
action.

What it actually contains is the first address for
the print-line divided by 2, with the other seven as
sequential increments of this value. Hence to derive
the address of a pixel-line you have to add its entry
to the entry for the print-line. No doubt this
eccentricity serves some secret CP/M purpose, but I
can't imagine what.

The real point to Roller-RAM 1s that, oddly written
as it 1is, 1t does contain unambiguous data that
allows us pin down the memory addresses of a chosen
screen location. In particular, doubling the entry at
B600/B601h, ie. (0/1,182), gives the address of the
start of print-line N2 O (ie. of the byte at the
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ROLLER SCREEN ADDRESSES
RAM

Print Print Print Print
Address Content Colm O Colm 1 Colm 2 Colm 3 etc,,,
(0,182) | [T —| A+4A A+A+8 | [A+A+I16]|a+a+24]
(1,182) A+B A+B+8 A+B+16
(2,182) | ¢ A+C A+C+8
(3,182 A+D A+D+8 PRINT LINE
8 | A+E A+E+8 N2 0
(5,182) A+F A+F+8
(6,182) | ¢ A+G
(7,182) A+ H ete
(16,182) | | P+P P+P+8 P+P+16|[P+P+24]
(17,182) F " P+q+8 | [P+ Q16 |
(18,1820 | o P+R P+R+8 PRINT LINE
(19,182) P+8S P+5S+8 Ne 1
(20,182) P+T etc

The addresses in Roller-RAM mapped onto the corresponding screen locations,
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top left corner of the screen), doubling the entry to
be found at (16/17,182) gives the address of the
start of print-line N2 1, and sc¢ on, each useful
entry being 16 bytes on from the last. The diagram
o?posite shows the connection between the contents
of Roller-RAM and the addresses of screen—bytes

To demonstrate the efficacy of Roller-RAM's record
keeping, change the last part of the earlier program
to read as indicated below.

SUB-R:
ld hl (RLLR) 42 0 182 Take lst entry from
Rcliler-RAM
add hl, hl 41 and double 1t.
1d (hl) 255 54 255 Set all the pixels
ret 201 and finish.

This version will displa% a short line of pixels at
the top left corner of the screen. However, as socn
as you leave the m/c routine, BASIC will report “Break
at 500. Ok" and these two text lines will cause the
screen contents to be scrolled up thus carrying our
gixel—line to oblivion. This explains my inclusicn of
he ‘await a key-press' in the first section of the
program. Without 1t you wouldn't see the pixel-line
due to immediate scrolling by BASIC. Unlike the
earlier version of the program, however many times it
is called this one always puts the line in the same
place on the screen.

Screen Co—ordinates

Because printing always starts at the top left of a
age 1t 1s natural for the Roller-RAM to start from
hat point of the screen. However most of us have
been educated to a co-ordinate system that ccunts
positive as up and to the right so it is natural for
us to want the bottom left corner as the ‘origin' or
zero point of our screen map. That is what I will
use 1n calculations relating to screen positions
which will therefore range from [0,0] at bottom left
to [719,2558] at top right. [0,255] corresponds to top
left, and [719,0] to bottom right. To avoid ambiguity
square brackets will indicate that these are
Eositions in a rectangular co-ordinate system and not
ed-biro addresses. Pixels are packed together about
twice as densely in the horizontal as in the vertical
direction, so the value in the X' direction should be
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doubled if a ‘'square’ display 1is required. This
allows two side by side pixels to be illuminated for
each point which "greatly enhances the brightness -
single pixels are not easy to see.

Calculating screen addresses

The procedure for calculating the address of the
screen byte for a chosen co-ordinate pair is a matter
of common <(and probably garden) algebra, but it
occupies several stages of deduction and explan—ation
so have relegated it toc Appendix 5, though the
calculations can be summarised as :

Calculate which print-line we are in.

Is a fraction of a print-line involved ?
Calculate the effect of the X' co-ordinate.
Derive addr of print-line from Roller—-RAM.
Add adjustments to get screen byte address.
Find the bit number within the byte.

This gives both the address and the bit number so
the latter can be set without disturbing the other
bits at that address, hence images can be imposed on
a back-ground without corrupting 1it. For moving
images It is a simple matter to record the address
and the bit that was last set and then reset it
without going through the 1ength¥ search procedure a
second tlme, though such resetiing will ‘unpick' a
background if 1t 1s not constantly refreshed. The
following table gives the Vars of a sub-r to obtain
screen addresses:

DO WA -

51200 (0,200) Lo byte of 'X'. PUT CO-ORDS
~ 51201 (1,200) Hi byte of 'X’ IN HERE BEFORE
51202 (2,200) 'Y! CALLNG ROUTINE

51203 (3,200) LINE.

51204 (4,200) 31 - LINE.

51205 (5,200) Fraction of line.

51206 (6,200) Lo byte of 8xCOLM.

51207 (7,200) Hi byte of 8xCOLM.

208 (8,200) Lo byte of Line-address.

9 (9,200) Hi byte of Line-address.

0 (10,200) Lo byte of BYTE-ADDRESS. Results
1 (11,200) Hi bgte of BYTE-ADDRESS. do

2 (12,200) SET BIT (1-128 not 0-7) do
3 0ld
4
5

(
(14,200 address
(15,200 and bit.
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Insert the next Opro ram at 50,000, and the required
co-ordinates at 0/2,195). It returns the Screen Addr
and Bit No at (10/12,195).

When given the appropriate feed it can fill the
screen pixel by pixel in about 41 seconds. This ma
not sound fast, but as there are 184,320 pixels 1
amounts to one every 0.22 milli-seconds. In cases of
moving a relatively small number of pixels against a
stationary background, the operation 1is quiie fast,
and some increase could be gained by not storing
some of the parameters that incorporated to make
testing easier.

Prepare to use Screen Envircnment

START:
ld bc SUB-R 1 897 195
call USERFN 205 89 185

DEFW 233 0
ret 201
USERF:
ld hl (0001) 42 1 ©
ld de 87 17 87 0
add hl de 25
Jp ¢hl) 233
SUB-R:
Calc 'LINE' & ‘31-LINE®
1d a (51202) 58 2 200 Put 'Y' into A,
d c, a 79 and intec C.
srl a 203 63 Divide
srl a 203 63 b¥
srl a 203 63 elght
1d (51204)a 50 4 200 store (31-LINE),
ld b, a 71 put into C,
1d a 31 62 31 and subtract
sub b 144 from 31.
1d (51203)a 50 3 200 Store LINE.
Calc part lines
ld a (51204) 58 4 200 31-LINE intc A,
sla a 203 39 and
sla a 203 39 multiply by
sla a 203 39 eight.

continued on next page . . .
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add 7 198
sub a, ¢ 145
1d (51205),a 50
8 x Column N2
1d hl1¢(51200) 42
res 0, 1 203
res 1, 1 203
res 2, 1 203
ld (51206)h1 34
Get Line—-Address
ld h1(51203) 42
ld h O 38
add hl, hl 41
add hl, hl 41
add hl, hl 41
add hl, hl 41
1d de RLLR 17
add hl, de 25
1d e ¢hl) 94
inc hl 35
ld d (hl) 86
ex hl de 235
add hl, hl 41
ld (51208) 34
Get byte—address
ld de(51206) 237
add hl, de 25
1ld a(51205) 58
ld e, a g5
ld d, ¢ 22
add hl, de 25
ld (51210)h1 34

Find bit N2 & set it

ld a(51200 58
and 7 230
ld b, a 71
ld a, 7 62
sub a, b 144
Xd B, 1 6
or a 183

7
5 200

0 200
133
141
149

6 200

3 200
0

8 200

91 6
5 200
0
10 200

0 200
7

7
1

200

PCW Machine Code

Add seven,
and subtract
then store.

'y,

‘X' into HL.

Obtain the
value of
'8xINT(X/8)':
and store.

col N

'LINE'
HL.

Mgltiply
sixteen.

R-RAM addr into DE.
HL pts to Line-entry.
T?gnsfer

into DE,

then into HL,

double for Line-addr
Store.

into

'8xColm' into DE
add to Line-addr.
Fut

‘part-lines’

Into DE,

and add to result.
Store.

Low byte of 'X' to A
et 8x(X/8-INT(X/8))
en

subtract from

7 to give bit N2
Set bit N2 O of B
End if A...

continued on next page . . .
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jrzb
sla b
dec a

or a,

¢hl)

1d (hl) a

ret

To make absoclutely sure that
working pr%?erly added the
start of SUB-R:
FEED:

ld h1(51200) 42 0 200

inc hl 35

1d (51200)hl 34 0 200

ld de 171 17 207 2

or a 183

sub hl, de 237 82

Jre 13 56 13

ld hl 0 33 0 0

1d (51200)hl1 34 0 200

ld hl 51202 33 2 200

dec (hl) 53

ld a (hl) 126

or a 183

ret z 200

40

5

203 32

61
32

251

120
50 12 200
182
1189

201

contains zero.

Else move the set bit
leftwards using (A)
as a count.

Then store setl bit
in 51212,

Set this bit

of the HL address.

Return to USERFN.

the above routine was
following code at the

Increment

the value

of ‘X'
If 1t

has not
exceeded 171
then fump on.
Else reset 'X'
to zero,

and

reduce 'Y’
by 1.
If 'Y is now
zerc then END.

and the following to replace the last ‘ret' :

RUBOUT:

ld h1(51213)

1d a(5i12
cpl
and (hl)

15)

ld (hl) a

1d h1(51210)
1d (51213)h1
ld a(51212>
Id (512154

1d b 255

200
200

42 13
58 15
47
166

118

42 10
34 13
58 12
50 15

6 255

0

0

16 252

195 97 195

200
200
200
200

Reset

the last

plxel

that was

set before this.
Record present addr
as the last address,
and present set-bit
as last sel-bit.

Slow

the

process

down by looping.
Then repeat.
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These additions cause the routine to set each screen
bit in turn and then reset the one that was
reviously set. It gives the effect of a dot of
ight moving from left to right across the screen and
dropping to the next line down at each line-end like
the rasier dot of a TV screen. If the process is not
slowed down by the ‘djnz‘', the dot seems to flicker
and move irregularly because of interference from the
interrupts and the ‘monitor scan. To initiate 1it, use
this BASIC sequence which starts the dot at 'Y' = 50,
and resets the 1st screen-bit to get things going:

poke(51200),0: poke(51201),0 @ poke(51202),50:
poke(51213),0: poke(51214),48: poke(51215),89:
print chr$(27)+chr$ (69):

z=50000: call z: stop

Screen Clearing

If for some reason the escape-sequence '27 69' cannot
be used, you can still clear the screen by includin
the following code in 'SUB-R'. It makes no use o
Roller-RAM but puts zeros into every screen—address
regardless of thelr sequence on the screen. It takes
0.09 seconds.

ld hl SCR-ST 33 48 89 First scrn-byte addr
1d ¢hl) © 54 0 Zeroise.
1d de HL+1 17 49 89 2nd fczt*n-g te addr
nto
ld bc 23039 1 255 89 Num of scrn bytes-1.
ldir 237 176 Zero to all bytes
continue . .

A similar approach can be used for partial screen
clearinﬁ after obtainin the start address from
Roller-RAM, but you can't use a single 'ldir' because
simgle increments to such an address may give values
that are beyond the end of screen memory. After
each print-line has been cleared you must check that
the address pointed to does not exceed (47,179) or
B32Fh. If it does then all further clearing must be
from the start of screen memory at <48,89) 1le. 5930h.
Alternativel the start address of each 'to-be-
cleared' print-line can be taken from Roller-RAM.
(Remember to double the address from Roller-RAM.)
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Double setting

The following sub-r sets the pixel to the right of
the one set by the main program. If the existing
pixel 1s bit N2 O then 1t sets bit N2 7 of the
gresent address + 8, ie the one l¥1ng to the right on
he screen. If the gresent byte is at the right edge
of the screen (X' 2 712) and its bit N2 0 is set,
then the sub-r will not attempt to set a bit still
further to the right. With minor modification, the
aggroach can be used for setting the bit on the
other side, or for setting several bits to produce
thicker lines.

l1d h1(51210) 42 10 200 7h§stsc§2—byte addr
nto

1d a (51212) 58 12 200 and set-bit into A
bit 0 a 203 71 If set-bit 1s N2 O
Jr nz 7 32 7 then jump on.

1d b, a 120 Else copy bit to B
srl b 203 56 and move 1 place rt
or b 176 Combine this with Ist
or (hl) 182 and with scrn-byte
1d (hl) a 119 locad all to scrn-bt
ret 201 Finish.

ush hl 2289 Save scrn-byte addr

d h1(51200) 42 0 200 Put 'X* inte HL,
1ld de 712 17 200 2 and
or a 183 subtract 712
sbc hl de 237 82 from 1t.
pop hl 228 Recover addr,
ret nc 208 Finish 1f 'X' 2 712.
1d de 8 17 8 ¢ Else
add hl de 25 add & to byte addr
set 7 (hl) 203 254 & set 1ts leftmst bit
ret 201 Finish.

Line drawing

Because the CP/M screen map is laid out for printing
and not for plotting, the most convenient a?proach to
drawing lines is first to develo? a suite of programs
similar to the one above with the others capable of
setting the pixel above, below, to the left, and at
each corner of the primary pixel. An executive
routine then sorts out in which direction the line is
to grow from its start point and how many ‘up' or
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‘down' pixels are required per ‘across’ pixel, or vice
versa.

Thus if ABS(X1-X2) = 4xABS(Y1-Y2), then the line will
consist of segments 4 pixels 1long in the X'
direction, each segment touchin the last segment
corner 1o corner. or ABS(Y1-Y2) = 6xABS(X1-X2) the
segments would be 6 pixels long in the Y*' direction.
It "is a good idea to record the details of the last
ixel set so that the figure can be easlly extended
hereafter.

Deleting Pixels

The method of deleting set pixels is shown under
‘RUBOUT* on page 95. The set Dbit is put into A and
then complemented. If A is then ANDed with the
contents of the screen byte then you can guarantee
that this bit will be reset and the others preserved.
Note that the alternative of XORing with the original
un-complemented bit may not give ihe desired effect.
If the bit in the screen byte has alreadf become
reset by some other means, then XORing it with a set
bit will set it again.

Vertical Scrolling

The screen contents can rapidly be scrolled up or
down by scrollin% the contents of Roller-RAM. For
upward scrolling DE 1s loaded with the first address
of the RAM and HL with an address greater than this.
Call the difference between them ‘'Diff'. The amount
of screen movement will be Diff+2 pixels, so Diff’
must be an EVEN number or the screen will become
hopelessly scrambled. BC is loaded with the number
of bytes in the Roller-RAM minus Diff. If the status
line " 1s to be included this 1s given by 512-Diff,
otherwise b% 496-Diff. The scrolling 1s then
achieved by ‘ldir’'. '

For scrolling down DE is locaded with the last address
of Roller-RAM which 1is (255,183) or (239,183), HL with
an odd address smaller than this, and BC as above.
The scroll action is produced by ‘'lddr’.

Scrolling-up duplicates the bottom screen pixels,
scrolling-down duplicates the top ones, so a feed of
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new screen data at these places 1s required if a
consistent display is intended.

If wvertical scrolling takes place in multiples of 8
ixel-lines then printing can follow without problems,
ut otherwise newly Tprinted characters will be
scrambled.

Horizontal Scrolling

There must be some way of using Roller-RAM to scroll
horizontally, but being ignorant why it is written the
wza¥l it is and how it 1is used except for column N2 O,
I haven't been able to work one out, though it is
easy to scroll the screen data left or right column
by column (ie. in 8 ?ixel Jumps). To scroll left DE
is loaded with the tirst screen address (48,8%), HL
with (56,89), and BC with the number of screen bytes
minus 8, ie. with (248,89). The bytes are then moved
left by 'ldir‘.

To scroll right DE is loaded with the 1last screen
address (47,179), HL with (39,179), and BC with
(248,89). The right scroll is produced by ‘lddr’.

Scrolling the screen data never produces problems
with later printing, but it does produce ‘wrap' - the
column scrolled off the screen at one side reappears
on the other side on the print-line above or below
and this has to be overwritten by the incoming new
data. It is visually more satisfactory to blank the
ejected column prior to scrolling, or to scroll only
89 colms, so that the flicker effect is reduced.

Scrolling horizontally pixel by pixel is achileved by
rotating every screen-byte so that the end bit is
moved Into Cy, but it is complicated by then having
to rotate Cy into the byte 8 addresses away. It is
only theory so far, but some day I intend to do a
pixel-scroll in 8 passes of each print-line, each pass
starting one address later; in the pattern of an 8-
threaded screw. Whichever way, each print-line has
to be treated as a separate entity.
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The Memory Disc

The ‘'PCW' models have 64k of memory immediately in
contact with the Z80 processor, but a slice of this
is occupied by the resident BDOS and BIOS leavin
about 60k of "TPA for users. With a_ short BAS

program in place the amount of available memory is
down to 30k, and with longer ones it is not difficult
to provoke the "Memory full" report.

The amount of data to which the user can have access
is more or less unlimited 1if disc storage is used
but taking information from discs, working on it, an
then redisking the updated version is a distinctl
pedestrian procedure; as anyone who has sat throug
a monthly accounts package will confirm.

Fortunately for those jobs that require rapid
handling of a lot of data there is additional memor{
providing virtually instantaneocus access to a tota
of 256k in the case of the '8256° or 512k in the
case of the '8512' and '9512'. When the memory
allocated to CP/M has been subtracted, the availibilty
stands at 128k and 384k resp.,, and it would be a
highly unusual enterprise that felt cramped by
figures of this size. This is known as the 'Memory
Disc' though of course it is not a disc at all - this
is the name given to the set of memory blocks, with
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numbers of 9 and above, which can be treated by CP/M
as if they were a disc, at least in the sense that it
can write to, or read from, 'files' in this particular
memory area.

If you are interested in the technicalities of how
the different memory banks are ‘switched into
circuit', please refer to Appendix 7. For our present
purposes suffice it to say that CP/M contains a sub-r
called 'The Memory Manager' which can be called at
FD21h; (33,253) his 1s used by loading A with the
number of the memory bank required and then calling
the sub-r. Thus the following sequence: ‘

ld a, 0O 62 ©
call MEM_MANGR 205 33 253
continue . .

would switch bank N2 0 into circuit (see page 82 for
details of the banks).

Bank switching

The following sub-r uses bank switching as an
alternative to the Screen Run Routine to POKE bytes
directly 1into the screen data, thus setting and
resetting pixels within a print line.

xor a 175 Zerolse A and switch-
call MEM_M 205 33 253 in Bank No 0.

ld hl SCRN 33 48 89 Point tc screen data.
ld b 240 6 240 Count 240 bytes.

ld (hl),85 54 85 Fill byte with '85'.
inc hl 35 Point te next.

dfnz L 16 251 Repeat til count zerc
ld a 1 62 1 Restore

call MEM M 205 33 253 TPA.

ld ¢ 1 14 1 Await a

call BDOS 205 5 ¢ Ir(e{ypress.

ret 201 And finish.

As before, the screen location of the inserted bytes
will depend on Roller RAM, but the effects of " the
technique are limited to only a part of the screen
data and it has no access the Character Matrix RAM,
nor to Roller RAM, etc. These are all lcoated in
block N2 2 which 1is not accessible through a



102 PCW Machine Code

numbered bank but only through the Screen
Environment (see page 82).

Switching blocks

As an alternative to bank switching, experiment has
gielded an empirical method of addressing, not the
anks of the Memory Disc, but 1its individual blocks.
The method is to load A with a value of 35 or more
and then call the Memoril Manager. The required block
is then switched into clrcuit and is available as i1If
1t covered the address range (0,64) to (255,127), the
??E)E‘Z% ; of the switched- block being given by
a i

Do not attempt to use this approach to access CP/M
features such as Screen Data, Roller RAM, Character
Matrix RAM, etc. To address them use the Screen Run
Routine as described in Chapters 9 & 10.

The highest block in use by CP/M is N2 8, so you
should not write into a block that has be called by
an A value of less than 35 An A value of 35 and
above will provide contact with the blocks of the
Memory Disc, and you can insert data into, or obtain
it from, such blocks by addressing them in the range
0,64) to (255,127). his means that the address of
the first byte in the block 1s always (0,64),
regardless of the block number, and the address of
its last byte is always (255,127).

As each block contains 16k of memory there are 16
blocks in the '8256' (N2s O to 15), and 32 in the
'‘8512' and '9512' (N¢s 0 to 31). The highest value
laced in A before employlng this method should
herefore be 41 in the case of the '8256°, and 57 in
the case of the other machines. To switch-in a
chosen block, put the a%%ropriate value into A and
then call FDé 1h, ie (33,253). When you have finished
with the block, load A with 1 and call the address
again to re-establish the TPA, The calling sub-
routines should be in block 7. As indicaled on
page 82, block 7 1is always in service and your sub-
routines that call up new blocks and then switch back
to the TPA must be located in it so they are not
switched out of circuit. The most likely use of the
Memory Disc 1s as a storage area from which to
withdraw data so that your routines in the TPA can
work on it, as by:
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a) switch-in the new Block

b) 'ldir' requ data intc a ‘holding area' in block 7

c) switch back to the TPA

d) employ relevant TPA sub-rs to process data in
the helding area

A convenient ‘holdin area' 1s the region from
(128,242) to (0,246) 280h to F600hl. As indicated
on page 54, this region 1s available after program
loading has been completed but it cannot be a
constiiuent of a program because such a program
would be too long to load.

Whatever else has happened, block 7 always starts at
0,192), though you can duplicate it at (0,64) as well
if you wish.” If the grocessmg sub-routines can all
be accommecdated in block 7 "and are fully self-
contained then it will not be necessary to move the
data because they can process it where it lies during
the time that the new block is in-circuit and then
pass on the result of such processing as a few
variables. Having the main variables area in block 7
would be convenient in this regard. Whereas you can
always move data back and forth between any block
and block 7, there 1s no guarantee that you can move
it back and forth directly between other pairs of
blocks, though it can be done indirectly by using
block 7 as the intermediary.

It 1is also possible to locate some sub-routines
within the blocks of the Memory Disc and obtain data-
grocessing through them 1if this 1s desirable, but
his 1is risky because such routines must unfailingly
return control to block 7 regardless of excursicns
such as errors or unplanned-for results from
calculations, and they must be able to operate in the
absence of the facilities that may have been switched
out of circuit, including the stack. It is therefore
better to regard the 'Memory Disc' as Jjust that; a
welcome extra piece of storage.

Restoring the TPA

Because it is essential always to return to it, I will
risk boring you by restating that the TPA (Bank N2 1)
is the ‘'standard” bank that will contain your main
operational routines and their varilables areas.
Switching back to it is achieved by loading A with ‘1’
and then calling FD21h 1e (33,253). This instruction
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will be required immediately after every use of the
Memory Disc, and it needs to be located in common
memory.

An example program

The following program 1illustrates a possible
agplication of the block—switching technique. Imagine
that an unspecified number of 128-byte data records
have been stored in blocks 8 upwards, and that each
has a two-byte serial number in its first two bytes.
This routine 1s given the job of searching through
the records to find the one whose number is the same
as the number at (0/1,196). If the correct serial
number cannot be found, a return is made with Cy set,
otherwise Cy is reset and the required document is
returned in "the 128 bytes from (128,242).

The procedure consists of two sub-rs. The first one,
called ‘Next Doc', takes the document address detail
from (2/4,196) and incrememts it to point to the next
document. This has been separated off as an
independant sub-r because it 15 1likely that other
routines would find a use for it.

The second, called 'Test Doc’, is the test routine. It
uses ‘Next Doc' to locate each document in turn, and
tests each to see 1if 1t matches the required one.
The variables have been allocated as follows:

50176 0,196) Required
50177 (1,196) serial number
50178 2,196) Last tested document
50179 (3,186) address.
50180 (4,196) Last tested doc block N2;
(35 to 57).
‘Next Doc'
ld h1(50178) 42 2 196 Add 128 to last addr
ld de 128 17 128 © and test to see if
add hl de 25 result > highest

1d (50178>h1 34 2 196 permitted doc addr

continued on next p%e v o
ld de H H 17 123 1 of (128,127).

or a 183
sbc hl de 237 82 If 1t does not then
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cef 63 finish with

ret nc 208 Cy reset.

1d hl O 64 33 0 64 Else put (0,64) as

1d (50178)h1 34 2 196 1st addr 1n nxt blk
ld hl1 50180 33 4 186 and 1ncrement the
inc (hl) 52 block number.

ld a ¢hl) 126 But 1f block number
cp 58 254 58 (##) now exceeds maxm
ccf 63 then finish with Cy
ret 201 set, else reset.

‘Next Doc' works by adding 128 to the last document
address. If the result exceeds (128,127), which is
the highest address at which a document could start,
then (0,64) is put in as the next doc address because
that is the first address of the next block, and the
block number is incremented. If the block number now
exceeds the maximum for the machine [(#%#) 57 for the
‘512" models, or 41 for the '8256°'1, then all the
documents must have been examined and so Cy is
returned set. Otherwise Cy is returned reset. The
proper setting of Cy 1s achleved in both parts of the
sub-r by ‘ccf”.

'Test Doc'

Because the first action of the testing sub-r will be
to increment the doc address, the program is
initialised by putting the [first address-1Z281 into
the variables. Each doc is then tested in turn until

either 1. 'Next Doc' returns Cy set, in which case
‘Test Doc' terminates, also with Cy set.

or 2. The two serial numbers correspond, in
which case the document is copied, the
TPA 1s restored, and Cy is reset.

As with all example programs, this is by no means the
fastest way of dealing with the task, but examples
are there to illustrate principles, nct to show how
clever the author is. In a real life situation, 'Test
Doc' would be able to test for correspondence with a
much wider range of parameters than just the serial
number by testing for compliance with a ‘mask®’ that
had been composed through the use of a screen
questionaire.
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'Test Doc'
ld 128 63 33 128 63 Initialise 'last' doc
ld (50178)hl1 34 2 196 addr="'(0,64)-128"
ld a 35 62 35 and block as
ld (50180)a 50 4 196 N2 35.

Next:
call NEXT_D 205 N N Point to next doc and
Jr nc OK 48 7 Jump on 1if no carry.
ld a ! 62 1 Otherwise restore
call MEM M 205 33 253 the TPA,
scf 55 set Cy,
ret 201 and finish

ld a(50180) 58 4 1596 Switch-1in

call MEM M 205 33 253 this block.

1d h1(50178) 42 2 196 Doc start-addr in HL
1d a(50176> 58 0 196 LB of N2 into A

cp (hl) 190 If requ LB and doc LB
Jr nz Next 32 229 not same try next
inc hl 35 Point HL & A to

ld a (50177) 58 1 196 HBs and 1f these not
cp (hl) 150 the same then

Jr nz Next 32 222 then try next.

dec hl 43 Else transfer

1d de 62080 17 128 242 the document

ld bc 128 1 128 0 to the

ldir 237 176 holding area.

1ld a | 62 1 Restore the

call MEM M 205 33 253 TFA.

or a 183 Reset Cy

ret 201 and finish.

For your reassurance I have been using the ‘Empirical
Method' of block switching for three years the
commercial manipulation of accountancy documents. If
there had been any glitches in the approach they
- would have shown themselves with a vengeéance by now.
Commercial work has the advantage of sharpening the
attention wonderfully.



Chapter 12
Disc Handling

There are three stages in bringing a disc file into
existence; the file 1is first Created, something is
written in to it, and then it is Closed. Once ese
three operations have been completed the file is
ready for use. To use it you Open it, use it, then
Close it again.

‘Create’

The BDOS function to create a file is N2 22. To use
it you first need to load DE with the address of your
chosen ‘File Control Block'; the 'FCB'. The FCB is a
36-byte area of memorg into which you put the
description of a file that you wish to manipulate.
}’hfl data needed in the FCB for creating a file is as
ollows:

Bytes N2 Data

0 Drive Number (A:=1, B:=2).
8 The file name (8 chars).

8 to 11 The file type (3 chars).

12 to 35 All set to zero.

The first byte receives the drive number in which the
disc is waiting. 1 = drive A: 2 = drive B: etc. . .
through to 1 which refers to drive P: though I
doubt if many of us will have one of those. A zero
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in byte N2 O specifies the 'default' drive, whichever
that may be at the time. (A ‘'default’ value 1is one
that the computer ascribes to something in the
absence of a specific instruction from the user.)

On the ‘8256' and '9512' there is only one disc drive
so only '1t' (dle. drive A apglies, though you can use
‘0 1f you 1like because A: 1is automatically the
default drive as well. On the '8512' you can use
‘0''1', or '2°, to select a drive. If you use a non-
existent drive number you will get a CP/M error
message and be returned to the ™A>" prompt, thus
%%s)ing contact with your program (but see chapter

The next 8 bytes are for the ASCII codes of the
filename in UPPER CASE (capital letters). If you
don't use upper case then (CP/M will not be able to
find your file again when it looks through the
directory for it. he name may not be more than 8
characters long. If it is less than 8 characters
then the remaining bytes must be filled with ‘spaces’
the ASCII code of which is 32. If you want CPF/M to
co-operate with your filenames, "don't use the
char;z;ctt)ars listed on page 2 [364]1 of the manual (CP/M
section).

The next 3 bytes receive the ASCII codes of the file-
type, again 1in UPPER CASE. When file names are
written out in full, as in the CP/M 'pip* command, for
example, the flle-name and the ‘file-type are
separated by a full-stop (.), but this should NOT be
included 1in" the FCB. You can make the fille-type
any thing ¥ou wish, but certain letter combinations
have speclal significance and it is better to aveid
them except when the significance is intended. The
sgecial types include COM, SUB, ENG, BAS, REL, ASM,
EMS, SYM and WP.

The remaining 24 bytes of the FCB are reserved for
use by CP/ for storing information during the
creation the file. They should all be zercised before
calling the ‘Create’ or ‘'Open' functions and not
changed subsequently. (For a quick method of making
FCBs see page 123 and appendix 10.)

Suppose I want to create a file called MC.COM' on a
disc in drive A: and that I already have in memory
starting at address 50100 (180,195) a string made
out wi these letters and spaces (which wculd be;
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77 67 32 32 32 32 32 32 67 79 77 ), and that I wish
the FCB to be at address 50176 (0,196). A mini
gouiltine for creating such a file could be as listed
elow.

Create
Prepare FCB:
ld a 1 62 1 Insert the
ld (FCB>,a 50 0 196 drive N2 into byte 0
ld de FCB+1 17 1 196 Copy the
1d hl STRING 33 180 195 string
ld bc 11 i 11 @ Into
ldir 237 176 bytes 1 to 11,
1d hl FCB+12 33 12 196
1d b 24 6 24 Zerolse
ld ¢hl) © 54 0 the
Inc hl 35 remalining.
djnz 16 251 bytes.
Create the file:
ld ¢ FNCNUM 14 22 Fnc N2 into C
ld de FCB 17 0 196 Point DE to FCB,
call BDOS 205 5 0 and actuate.
continue .

After the 'Create' function has been called it is
Rossible to check on 1ts success by inspecting A. If

contains 0 to 3 then the Create was successful. If
it contains 255 then the Create was unsuccessful,
probably because the Disc Directory was full and the
details of no more files could be written in to it.
The simple way to test this is to increment A. If
this sets the Zero flag then A must originally have
contained 255 and an error-handling procedure ‘should
be called. (See chapter 13.)

You should not attempt to Create a file if one of
that name already exists on the disc. If you do you
will corrupt the disc and maK not then be able’ to
read anything from it. If there is any doubt, use
the ‘Delete’' function to erase any such that may
exist before creating a new one.

L] openl

BDOS function N2 15, 'Open File' is performed exactly
as 1s the Create function, but it is applied to
existing files to make them accessible for reading or
for having more data written into them. You should
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not attempt to manipulate a file that has not been
recently either Created or Opened, nor change the FCB
until the file has been closed again. If the file is
found and successfully opened then A 1s returned
containmgso to 3. If it cannot be found then A will
contain 5 which can be tested for by ‘inc a‘' as
indicated above.

‘Wild Cards’

The use of ‘wild-card' characters in file names is
described in the CP/M manual on gage 8 [370] and
later, and a similar procedure can be used from m/c.
The asterisk ‘#' cannot be used, but if a *?' (ASCII
63) 1s 1inserted at any place in the file-name or
file-type then any character will be regarded as a
match  for 1it. The following table shows which
functions can be used with wildcards :

YES NO
15. Open . 22. Create
16. Close 23. Rename
19. Delete

‘Write' and 'Read' use the existing FCB which will
already contain the wildcards if any.

Memory address

To write bytes from memory into any sort of file, or
to read bytes out of one into memory, we have to use
yet another set of initlals (sorry).  DMA' stands for
Direct Memory Access'’, which harks back to ancient
computer times and therefore means nothing nowadays
but nobody wants to change it. The term 'Set D
address® means ‘Tell CP/M the address of the pilece of
memory we are interested in'. In this context a
piece isdalways 128 bytes, and such a plece is called
a record.

Setting the DMA address is achieved by calling BDOS
function N2 26 with DE pointing at the address
concerned.

When a file is being read from, 128 bytes will be
transferred from the disc intoc the piece of memory
that starts at the DMA address. When a file is being



Chapter 12 111

written into, 128 bytes will be copled ontc the disc
from the piece of memory that starts at the DMA
address. is applies to all varietles of files.

'Close’

After any sort of file has been accessed it must be
‘Closed' 'before the FCB 1is used for other gurposes
and before the computer is turned off. ‘Close* is
achieved by wusing BDOS function N2 16 with DE
pointing to” the FCB that was used to create (or open)
and process to the file. A successful Close is
indicated by A containing O to 3. A value of 255
indicates no success, probably because BDOS couldn't
find the named file.

The purpose of the Close operation is to update the
disc directory with the new details of the file. If
you don't EEt a successful Close then the file
contents will not match the disc directory and it
?1%1 probably be impossible to access it properly in
uture.

File types and Kinds of files

There is a distinction to be made between ‘file type’,
and ‘'kind of file’.

The file type is indicated by the three letters that
follow its name. Filles that contain text (which are
sometimes ﬁiven the type letters 'TXT') will contain
solely ASCII- and print control codes. Data files
(sometimes given the type 'DAT") such as perscnnel,
accountancy, or stores records, will probably hold a
mixture of numerical and string data. Whatever may
be conventional, you can give these two sorts of file
any file-type you like.

Because .COM files are to self-run they must contain
at least one m/c routine and the strings and data
they need for their operations, and they must have
ttfletgile-type ‘COM' or they won't do what 1s expected
o em.

There 1is more than one way of writing into or
reading from files, and it 1is this that determines
what kind it is. (See the manual page 55 vol 2 [502]
for a description of the different kinds of file.)
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As far as we are concerned there are two kinds: the
sequential access and the random access.

Whatever kind or type it is, once the file has been
created or opened data can be written into it. What
is written in will be a sequence of bytes. The bytes
can represent anyth you like. he file-making
rocess is indifferent to the contents, and all of the
write' instructions will copy into the file whatever
set of bytes you have pointed to.

The first kind we will consider will be sequential

files, then random access files. Next we will look

at the process of making back-up files, which applies

to all types and kinds of file, and at the end of the

c@gﬁt?{l we will examine the special usefulness of
es.

SEQUENTIAL FILES

When writing into sequential files, CP/M takes each
batch of bytes and puts them into the file in
sequence. Once the sequence has been established it
can't be changed. If you want to modify it you

1. co;lay the data into memory and change it there.
2. delete the oréginal file, make a new one of the
same name and put the new data into it.

‘Write sequential’

Once the DMA address has been set it is possible to
write the first 128 bytes into file from the DMA
address by loading DE with the address of the FCB
that was used to create or D%%en the file, and then
calling ‘Write Sequential'; B function N& 21. If
the Write operation 1s successful then on completion
A will contain zero.

If A contains a non-zero value then the Write was
unsuccessful, Probably because the disc or the
directory 1is +tull, or the FCB 1is invalid. The
simplest way of checking this is to use ‘or a’.
zero value In A (indicating success) will set the
Zero flag.
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'Read Sequential®

Reading from a sequential file is similar to writing
to one. The function number is 20. Reading shoul
be attemgted only with files that have been Opened,
and the FCB used in the Open should be used in the
Read. One Read operation coples 128 bytes from the
disc into memory starting at the current DMA address.

A successful Read returns zero in A. A non-zero
value indicates that 1t was unsuccessful, probably
because an attempt to read beyond the end of the
file has been made (A=1), or the FCB is invalid (A=9).
Reading into memory a number of 128-byte records can
be done in the way described for Write Sequential
(see below), or continuing to read until A is found
to hold the value 1.

Summary

These procedures may seem long-winded but in fact
they flow quite naturally once you have seen the
reason for each step. The sequence for writing to a
file can be summarised as below <(function Nos in
brackets), and an exactly similar procedure Iis
required for reading from one:

1. Prepare the FCB with the Drive N2, the file name,
the file type, and zeroces in the remaining bytes

2. Either Create (22) a new file or Open (15) an
existing one by pointing to the FCB with DE and
calling the appropriate BDOS function.

3. Point to the section of memory that contains the
bKtes you want to write to the file by setting
the DMA address (26).

4. Write the }?’tes into the file by pointiraﬁ DE at
the FCB and calling the BDOS function ‘Write
Sequential' (21).

5. Close the file bSy fpc»inting DE at the FCB and
calling the BDOS function (16).

It may help if you remember that ever¥ time you want
to tell CP/M which file you are referring’ to, you
goint DE to the FCB that describes it. Remember also
hat BDOS corrupts the registers so it 1s necessary
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to re-load them with their required contents after
each use of BDOS.

Making larger files

The above sequence describes the creation of a file
containing only one 128-byte record. In fact it is
usual to want to write much more than this so it is
necessary to repeat the ‘'Set DMA address® and ‘Write
Sequential’ functions several times.

Suppose we find that we have 2197 bytes that need to
be written into a new file. This corresponds to 17
records plus 21 bytes left over. The smallest block
that can be copied is 128 so the 21 bytes get a
whole 128-byte record to themselves, making 18
records in total. (The 107 bytes beyond the end of
the data will be copled onto the disc as well.)

To achieve the copying we go through the initial-
isation of the FCB and Create the new file. Then we
Point DMA to the start of our bytes and order the
Write sequential’. This takes care of the first lot
of 128 bytes.

We then add 128 to the first DMA address so that it
now points to the second lot of 128 bytes. We then
set the new DMA address, and order ‘'Write Sequential'
again (which automatically selects the next part of
the disc to write to). This is repeated 16 more
times until all 18 records have been pointed to and
copied. Then we Close the file.

The tally of 128-byte records and the DMA addr
cannot be kept in registers because they would be
corrupted each time BDOS was called, but the listing
below 1illustrates a routine that might be used for
this purpose. It ‘'pushes' the count and the address
onto the stack and reclaims them later by '?gg'. It
assumes that the FCB has been prepared as icated
at the start of the chapter, and that the first
address to copy data from is 'ADDR".

ld de FCB 17 £ F Cancel any
ld ¢ DELETE 14 189 file of
call BDOS 205 5 0 the same name.

continued on next page . . .
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ld de FCB 17 F F Create
ld ¢ CREATE 14 22 a new
call BDOS 205 5 O file.
inc a 60 If A=255 then siqnal
Jp z ERROR! 202 El El ‘Directory Full®.
ld de ADDR 17 A A First addr of DMA.
ld- b 18 6 18 Count of records.
Loop:
push bc 187 Store count,
ush de 213 and DMA address.
d ¢ SETDMA 14 26 Set the DMA to
call BDOS 205 5 O the addr in DE.
1ld de FCB 17 F F Polint to FCB
ld ¢ WRTSEQ 14 21 and write a
call BDOS 2056 5 © 128-byte record.
or a 183 If A#0 then report
# Jp nz ERROKZ 194 E2 EZ 'Disc Full'.
ggp de 208 Recover last DMA
hl 128 33 128 0 and
add hl de 25 add 128.
ex hl de 235 New addr intc DE.
op bc 153 Recovr record count
djnz Loo 16 228 & loop 1f not 0.
ld de FC 17 F F Foint to
ld ¢ CLOSE 14 16 the FCB
call BDOS 205 5 0 and Close file
inc a 60 If A=255 then re
Jp z ERROR3 202 E3 E3 '‘File not found'.
continue .

If an error occurs you will at least wish to signal
‘Disc Full', or whatever, so that the operator can
deal with the situation, but you don't want to return
to the address after the place where the error
occurred so CALLing an_ error routine is not
appropriate: you need to JUMP to it, and from there
ﬁo back to the main ‘Menu Routine' (see page 120).
lso note that in the above listing there are two
‘push’ instructions outstanding (le. two not cancelled
bK a 'pops") if the jump to 'ERROR2' is made (#), and
the error-handling routine must account for this.
(See Chapter 13 and Appendix 6.)

Continued . . .
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RANDOM ACCESS FILES

So far we have considered only sequential files in
which you couldn‘t make changes except by deletin§ a
file and replacing it by an up-dated version.
However BDOS function Nos 34 and 40 allow us to
write directly into a file to replace any of 1its
records, and function 33 allows us to exiract any
record from it for inspection.

Function N2 34 1is called ‘'Write Random’. (In fact
these fliles have nothing whatsoever to do with
randomness but I suppose I'll have to swallow my
pedantry and stick to established nomenclature.) The
name attempts inadequately to imply that you can
write a new 128-byte record into the file at
whatever point you select (which 1s obviously
therefore not random).

Having Created or Opened the file and set the DMA
address, you put the required 16-bit record number
(0 to 65536) into bytes 33 and 34 of the FCB, and
zero into byte 35. You then call function N2 34. If
the file "already contailned a 128-byte record
corresponding to the number you chose, then the data
in it will be overwritten by the new insertion. If
it did not contain one then the function
automatically extends the file to provide one, and
then fills it. If originally, say, records Nos O to 10
existed and you request Write Random into, say, N2
16, the file will be extended to include N2 16,
records Nos 11-15 being full of garbage.

Function N2 40 1s called "Write Random with Zero
Fill'. It 1is supposed to do everything that N2 34
does and alsoc to fill any new blank sectors with
zeroes, but I don't think 1t does.

Function N2 33 1s called 'Read Random', and acts in
reverse to ‘'Write Random', ie. it takes a selected
record out of the file and puts it into memory
starting at the DMA address. As before, you sgecify
the record number in bytes 33 and 34 of the FCB, and
set byte 35 to zero.

Using Random Access is particularly convenient if you
are dealing with large files tha might require an
a?preciable time to read from and write into because
of the amount of data to be shifted. Random access
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involves only 128 bytes at a time which can be
transferred 1n a second or two, and also greatly
assists with the structuring of files because the
location of data 1s not changed by subsequent
additions or cancellations.

BACK-UP FILES

' Rename’

BDOS function N2 23 allows the names of files to be
changed. To achieve 'this an FCB is set up to contain
the description of the old file with zeroces in its
first 16 bytes, plus the new name and zeroes in the
second 16 bytes.

The drive code N2 in byte Ne 16 should be zero; the
drive code N2 in byte O is set to the drive of the
disc in question. Hence the contents of the FCB
bytes are as indicated below.

Byte Nos Content
0 Drive code N2

1 to 8 Existing file name
9 to 11 Existing file type
12 to 16 All zeroes
17 to 24 New file name
25 to 27 New file type
28 to 35 All zeroces

As usual DE points to the FCB, C is loaded with the
fnc N2, and BDOS is called at 0005h. A successful
Rename 1is indicated by A containing 0 to 3, an
unsuccessful one by A containing 255.” The new file
name must not be alread¥ in use. This function will
not accept ‘'wild-card' leiters.

Back—up files

A useful application of Rename is in making back-up
files. In the normal way of things if you take the
content of a file into memory sc that additions can
be made to it, it will be necessary to Delete the old
file before Creating the new one under the same
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name. If a problem arises after the erase has
occurred but before the new one has been recorded (a
power failure, say, or someone trips over the wires),
or if the recording is unsuccesstful and you switch
off without realising it, then you will have lost all
your data.

This can be avoided if instead of erasing the old
file it is given a different name. The new file can
then be Created under the required name. The change
in name 1is usua11¥ slight so that the connection
between the two ftiles can be seen at a_glance;
‘MC.COM' might be become ‘MC2.COM', for example. An
if you are handling very important files you might
choose to introduce another layer of backup; 'MC2.COM'
bein 2%%!;1am2d as ‘'MC3.COM', before renaming ‘MC.COM'
as . '

Temporary backups are often given the distinctive
file-type ‘$88', and some renaming 1is done by
changing the fiie—type to 'BAK', though I find this
less convenient because a 'BAK' file won't self-load
until you've changed it to a '.COM' (which see).

The advantage given by the backups is that although
ou can stiIll lose one version of the flle, it 1s
ardly credible that they will all bite the dust
together (unless you mutilate the disc, for which

misha few would hold the programm to be
culpable). I use one layer of back-up in developing
programs. When I press the SAVE key this is

programmed to delete the existing backup, rename the
resent main file as the new backup, and then record
he new main file.

With care over the detection and reporting of errors
this sequence is as safe as I expect to need. To
achieve it I have in memory a ‘File-name String' that
is separate from the FCB and is therefore not altered
by the file-handling operations. It is made up as if
for Rename as indicated on the previous page. It is
used in the the ‘'SAVE' process as follows :

1. To delete the old back-up file, 'ldir’' the second
half of the string into the FCB, set the Drive
Ne, zeroise the rest of the FCB, and call Delete.

2. To rename the old file as backup, 'ldir’' the
whole string into the FCB, and call 'Rename’.
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3. To create the new file, 'ldir' the first half of
the string into the FCB, zeroise the rest of the
FCB, and call *Create'.

MAKING AND USING .COM FILES

The beauty of a .COM file 1s that {you have only to
tgpe its name and it will load itself into memory and
then proceed to run untouched by human hand; a bit
like a genie being summoned from its bottle by a
magic word. (Though so far I have had no luck with
genies.)

The usual method of using CP/M 1s to wailt for the
'‘A>' prompt and then enter the name of the .COM file
that  you want to use. One such name could be
‘basic’, because Locomotive Software wrote their BASIC
into a file to which they gave the name ‘BASIC.COM'.
When the first part of such a name is typed in, CP/M
scans the disc directory for a .COM file that matches
1t. If one 1is found it is copled into memory
starting at address 0100h ie. (0,1) by the Console
Comman Processor (CCP), which wil have been
inserted into memory for that purpose.

If you try to load a file that is so long that it
would encroach into the upper area needed by CP/M
then you will get the report “Cannot load" without
any elaboration. (The maximum acceptable file length
is” just over 60k, ie. approx 480 records.) When
loading is complete, CCP {ransfers operation to the
new program by making a ‘jump’' to 0100h. Whatever
instruction 1is found at O0100h initiates the new
program's sequence of operations.

This gives the basis for writing files by m/c and
operat them. Provided the firsti m/c insfruction in
a COM flle gives us control then we can do anythin
we like from there. Hence it is ty‘fical for the firs
section of the file to be devoted to some kind of
'MENU' program which halts operations whilst the user
selects from alternatives, or inputs some data. Even
if this layout has not been adhered to for some
reason, its effect can still be obtained by putting
the three bytes of a ‘'jump to MENU' instruction as
the first three bytes of the program, and because I
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always like to leave options open even when the
rogram's needs seem cut and dried, I like to leave
he first ten or so bytes unused (zeroised) so that
such an instruction can be inserted later if that is
found to be necessary.

The MENU program

A typical Menu program to be found at the be innina
of a .COM file would start with a 'Print OString
instruction. This would load DE with the address of a
menu—gage string, put 9 into C, and then call BDOS.
A typlcal %age—str ng would start with °‘clear screen'
(27 '69), then display a title (probably underlined),
followed by a list of the options available tc the
user against each of which would be shown the ke
that is to be pressed to select it. The subsequen
selection of options would be based on BDOS function
N2 1 as outlined on page 61. The Menu Program would
either start at (0,1) or be preceded by a few zeroes
(not less than three), and lock something like:

ld de STRG_ A 17 § S Print the
ld ¢, 9 14 9 Menu
call BDOS 205 5 0 String
Loop:
ld ¢, 1 14 1 And await
call BDOS =~ 205 5 O a keypress
cp K1 254 Kl Compare
Jp z OPT.1 202 Ll Hi A with
cp K2 254 K2 each of the
Jp z OPT_2 202 L2 K2 allowed
cp K3 254 K3 ASCII codes
Jp z OPT_3 202 L3 H3 and Jjump
: ® B ¥ & to the appropriate
e g program when
cp Kn 254 Kn a match
Jp z OPT_n 202 Ln Hn 15 found.
1d e BEL 30 7 If no match 1s
ld ¢ 2 14 2 found then sound
call BDOS 200 5 ¢ the 'beep' and
Jr Loop 24 L loop back to repeat
In the above listing, K1, K2 . . . Kn, are the ASCII

codes of keys that are authorised for the user to
press to select a menu option.
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If he doesn't press any key then nothing will hagpen,
and if he presses an unauthorised one then a ‘beep’
will sound and the program will loop back to await
another choice, though there is no need to include
the ‘'beep' feature if it is not wanted. (Most of us
don't care for being beeped at, however justified it
may seem to the programmer.)

Testing .COM files

Note that a .COM file is always loaded into memory at
0100h regardless of the ~ address of 1its “own
manufacture, and this has to be taken into account
while it is being written; the addresses of all its
internal calls must aggly to this low area of memory
not to the addresses that apply during its assembly.

The snag here is that you cannot try out a program
until it is in the final ‘COM' version and in position
at low memory, and this will complicate the testing
process 1if you have no testing aids available there
(but see Appendix 9).

To overcome this you might write the sub-routines as
if they are to operate at the addresses at which
they are assembled, but make sure that the Low Bytes
of addresses are all the same as the% will be when
the program is transferred to 0100h. This applies to
addresses of the Variables etc.,, as well as to all
‘jump’ and ‘call’ addresses.

Then, immediately prior to making the COM file, and
after all testing has been carried out, institute a
‘Search and Chang_" procedure that runs through the
;grogram subtract the necessary fixed amouni from
he High Bytes of all addresses. The ‘Search and
Change’ 1is particularly easy to organise if you are
assembling with BASIC in place. On one occasion of
assembling at high memory because BASIC was in place,
I made a point of starfing everything from address
51456 (C900h) because this has a red-biro equivalent
of (0,201), whereas the in COM file version
everything would start from. (0,1). Hence all
addresses would undergo the simple transformation of
having 200 subtracted from their High Byte.

On the subject of testing; you should never pass on
from writing a sub-routine, particularly one to
calculate numerical results or data addresses, until
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you have certain evidence that it is doing its job
roperly. (Yes I know “There is no way in which
his one can fail", but don't you believe it.

The first COM file I ever wrote was called "bel".
When you tyg:d its name it loaded itself and sounded
two beeps quick succession. The fact that it
worked stunned me into a silence of wonderment, and
in the next five minutes I almost wore out the disc
with action replays. If it had successfully launched
a new Mars Probe I doubt if I would have been an
more impressed. I hope all yours are as successful,
and that at least some of them achieve a bit more!

MISCELLANEOUS FILE CONSIDERATIONS

A bit more about the DMA address

It is possible to write into or read from a file
without having set the DMA address, but then the
default location will be 0080h, sc the data area must
be the 128 addresses starting from there. When the
computer is switched on, DMA will have this default
address, but once you change it it retains the new
value until you change it again or you reboot the
system (see page 126). Because it 1is rare to cogy
only 128 bytes, it is better to think of setting the
DMA address as a normal part of file handling.

Assessing Disc Free Space

The amount of free space on a disc in a particular
drive can be assessed b¥ using function N2 46, though
it is necessary first to ensure that that drive is
‘logged—in’. The following sub-routine has two
alternative starts. Startin% at ‘Start 1' gives the
free space of the disc in drive A: starting at ‘Start
2' gives the same for drive B: If your machine has
no drive B: then you can leave out the 2nd and 3rd
otratti?ns (le. omit "24 2 30 1* ) and always use
Start 1°.

The first part of the sub-r loads E with the number
of the drive we are interested in and stores this by
pushing DE, but notice that in this case 0=A: and
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1=B:, which 1s different from the numbering used
when constructing an FCB. It then uses function N¢
13 to reset "all the drives, which has the
simultaneous effect of resetting the DMA address to
(128,0> ie, 0080h.

START_1:
ld e, © 30 O Start for drive A:
Jr 2 24 2 and jp to 'push DE'
START_2:
ld e, 1 30 1 Start for drive B:
push de 213 Save the value in E.
ld ¢ 13 14 13 Resel the drives
call BDOS 205 5 0 and the DMA address.
# pgp de 2089 Recover drive N2 to E
1d ¢, 46 14 46 and call
call BDOS 205 5 © the function.
1d hl (DMA) 42 128 © Collect space in HL
ret 201 and finish.

At '#' the drive number is put back into E by popping
DE, and function N2 46 is called. The disc free space
1s given as a 24-bit number in the first three bytes
of the DMA, which we know 1s now at (128,0). As the
result represents the number of unused 128-byte
records, i is unlikelg that you will have a disc that
contains more than 65535 of them (!, so you can
ignore the high-byte, and take the result from the
low- and middle-bytes. In the listing this is loaded
into HL before returning to the main routine

Quick Fix for FCBs

I am indebted to Mr Lind of Denmark for drawin my
attention to fnc No 152, called 'Parse File Name
which is a quick and easy way to set up a zeroised
FCB. For detalls see appendix 10.
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Error Handling

A computer ‘error' can be defined as any unexpected
or unwelcome event, and 1in computing if 1t 1is
ungxpected you can be pretty sure it will be un-
welcome.

Errors come in three broad kinds:

1. Those that direct operations to an undesirable
lace within your program.

2. Those that lead operations outside it by
returning to CP/M or to BASIC.

3. Those that prevent, or cause screwed-up, input
from the keyboard.

In all three cases you will have lost control of what
happens next.

TYPE 1 ERRORS

THucal of a type 1 error would be if a disc were
fllled during a Write—se%uential operation but the
sub-routine continued to iry to write bytes onto it,
thus corrupting it and possibly making all its dat
inaccessible. Obviously such a situation should not
be allowed to occur, ‘and in this case it can be
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prevented by testing the content of A ; the
discovery of a '255' should lead the program out of
the operation into an ‘Error Handling Routine' that
would be available to all sub-routines. This should
perform at least the following duties:

a. warn the user that something untoward has
happened, and tell him what it is,

b. await a key-press,

c. direct operations back to a safe ‘restart’
location.

It could be designed alse to indicate the program
address at which the error occurred and this could be
helpful to a programmer if there would otherwise be
some doubt about 1t.

To establish the error-handling sequence, the first
action of the main program should be to load SP into
some chosen address; call this ‘ADDR'. This records
the stack situation in the pre-start ‘all clear'
condition. Then, when the error has occurred, just
before Jumping to the error-handling routine, A is
loaded with the number of the error. This tells the
routine which error-message to dis{ola on the screen.
A typical list of error messages might contain:

Memory full

Disc full

Directory full

List X' full

Failed to Erase

End of File

File not found

Code ‘X' not found etc...

NONPR W= O

Naturally the contents of the list will depend on the
sort of program being run. The general method of
mnessage Selection and display 1s described on page
?91,150 a simple error handling routine might list as
ollows:

dd kil LIST 33 L L Point HL to 1list of
call PRTM 205 P P messgs, print the one
id cy J 14 1 pointed to by A &
call BDOS 205 5 0 awalt keypress.

ld sp (ADDR 237 123 A A Restore stack pointer
Jp NU 185 M M Return to main menu.
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The reason for relocading SP with the stored value is
that this automatically cancels any unfinished
business with ‘calls' or ‘'pushes' that may have been
short circuited by the jump to the error handling
routine. (See appendix 6.

TYPE 2 ERRORS

When the m/c routine has been called from BASIC, and
an error causes a premature return to it, there is
not much that can be done to retrieve the situation.
BASIC has its own error handling arrangements (see
‘On Error Goto®, but these will be of little use
because BASIC will be awaiting a command or runnin
the next bit of program, and be unaware of the m/c
error. It is therefore as well to put in a BASIC line
that tests to see if the m/c routine has run_to
completion, rather than just assume that it has. You
could, for example, arrange for the last part of the
m/c routine to change the value of a variable that
has no other use, or change the value in a reserved
memory address, and on return check that this has
been done. (See pages 172 and 360 of Vol 2 [509] of
the Manual.)

A premature return to BASIC will probably be due the
resence in the m/c routine of an unwanted ‘ret', or
o an incorrect change in SP causing a valid ‘ret® to

return the address at the bottom of the stack

instead of to the one it was supposed to return to.

The same possibilities exist if the m/c program has
been derived from a .COM file (ie. BASIC 1is absent),
except that a premature return will give rise to the
'A>' ‘prompt because operations will have been handed
over to CP/M. In this case, in addition to spurious
'rets’, any circumstance that gives rise to a
"Warmboot® 'will provoke the °‘A>°' prompt. Whatever the
cause, once the prompt has appeared you will be
unable to get back to your ‘m/c j};lxr‘ogram without
switching off the machine and start again. That
guarantees loss of any data that might have been
accumulated whilst the program was running.

CP/M Warmboot

When the machine is switched on it performs the so
called ‘Coldboot'; ie. it loads the necessary system-—
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programming and sets 1is system variables ready for
operations to begin. ‘Warmboot' is the name given to
a subsequent restart that doesn't involve switchin
off. ‘'Warmboot' doesn't reload the CP/M program bu
it does reset all system variables to the ‘coldboot’
condition, and then expects you to input a CP/M
command. If a type 2 error has occurred this will
have lead to a 'warmboot', but {)our program will still
be in memory though you won't be able to get back to
%t because there 1s no CP/M command that provides
or this,

All ‘'boots’, fur-lined or otherwise, involve a jump to
0000h, at which is to be found;

Jp 3 282,
At (3,252) is to be found;
Jp 111 252,

and at (111,252) is to be found a complex set of
instructions that do all sorts of abstruse and
wonderful things.

It is therefore possible to prevent CP/M warmboots by
changing the Jjump instruction at OOOOh. If, once
your program is installed and running, it changes the
address at 0001/2h, you will be able to redirect all
warmboot attempts to your own warmboot procedure,
and thus maintain control. This isn't something to
be done once the progi‘am has been given over for
civilian use because e address is used for other
urposes also (see page 83), but it is a handy tool
or a programmer desparately trying to work out the
reason for his program's kami-kazi tendencies.

CP/M disc error procedures

Some disc errors alsc cause warmboot and loss of
control. An example might be that the wuser
inadvertently makes some Inappropriate disc request,
to which CP/M might respond:

“Drive not ready: Cancel, Ignore, Retry?"
If a proper disc could be inserted followed b

‘Retry’,” then everything would be fine. If no suc
disc were available then a return to CP/M would be
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inevitable because 'Ignore‘ has no effect and 'Cancel'
acts like that. Just to be helpful, CP/M will give
you the additional information:

“CP/M Error on A: Disk 1/0
RI;QS Function = 15 File = FRED.DAT

though you may feel that that is little consolation.

Fortunately this arrangement can be modified by BDOS
function N2 45, which is called 'Set BDOS disc error
node’. The function requires that an error-mode be
put into E before calling it. The error-modes are;

0 to 253: Error message displayed followed by
warm boot {the normal arrangement; the
default sett is 0OOh).

254: Error message displayed but no
warmboot.
255: No message and no warmboot.

Error-modes of 254 and 255 can therefore be helpful
in maintaining control in case of errors of this tH}e,
though naturally you have to put in some alternative
procédure of your own.

TYPE 3 ERRORS

Type 3 errors are caused by ‘bugs‘’. (And you know
what people who insert ‘bugs' "are calledd The
machine and the system sofware can be assumed to be
faultless, so if you get lock-up or something equally
uncooperative then It is almost certainly because
your program has an error in it.

Normally bugs aught to be revealed by the tests
ag_;‘)lied to each of the sub-routines before they are
linked up to form the program, but it can hagpen that
a bug appears only after the program has been run.
A sub-r may be putting a byte inio an address that
is harmless, and therefore unnoticed, during the
tests, but one which has critical significance later
when the program is in use. This highlights the need
to keep a pure, un-run, copy of programs, particularly
if they are complex and not easy to follow through.
Once unintended bytes get into a listin§ they can
cause ever increasing corruption of what Is supposed
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to be there until it is quite impossible to trace the
original source of the trouble. If you have a good
version you can keep copying it to make tests.

Once a bug has entered a program, it can be detected
only by ‘homing-in’ on it, ie. by testing the program
ug to more and more advanced stop-points. his
should show the earliest place in the sequence that
the bu operates at, and make discovering it
relatively straight forward. If you think you know
what is causing the trouble but have not yet made an
ordered search, don't persist with your notlon too
long. I have occasionally dug mKself into ever
deepening holes by making changes ‘'that are bound to
solve the problem® when what I aught to have been
do was working through a patient and orderly
enquiry.

Recording results in memory so they can be insp-—
ected later (as indicated in chapters 5 and 6, and
elsewhere) can make bug hunting very much easier. If
a result isn't coming out right that won't be due to
bad luck, it will be because something is wrong with
the programming that produces it, or wit the
programming that feeds data to help in 1its
calculation.

Prggrams frequently have a need to .fe- store newly
produced data onto disc at the end of each keyboard
session. In these cases it is vital to separate the
operating program from the data so_ that only the
latter 1s involved in the recording. If a bug should
%et into a program during a pericd of use, the last
hing you want to do is to record it for posterity.
Information Theory makes use of a notion very similar
to Entropy - rderliness never gets any more
orderly; downhill 1s the only way it knows." We
accept the first idea without a murmur, but we need
our wits about us to forestall the second.

KEYING ERRORS

There is a particularly exasperating source of all
three types of errors; that of  the unintended
keypress. The most 1rritatirag ones are the function
keﬁ_r (f1 to f8) that occupy dangerous ground between
SHIFT, RETURN, DEL etc, and the numeral pad. One of
them in particular (I think it 1is f5) occasionally
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causes mayhem out of all proportion to its work-a-
day worth.

The simple answer is to redefine the keyboard so
that keys you have no use for have no effect when
pressed. his 1s achieved by creating a file to use
with the CP/M ‘'setkeys' function. The procedure is
described on page 108 [541] et seq of the manual.
Throu&h 'setkeys’ you can instruct any key to produce
any ‘ASCII code' you wish. The code for ‘Don't do
anything' is 159.

Your file can then be operated automatically at
start-up by referring to it in a 1line In a
‘profile.sub” file.

And 1f you are not familiar with ‘profile.sub’, I
recommend that you take as long as necessar¥ to swot
it up. It allows programs to self-load without any
keypressing. I wouldnt be without it.
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Arithmetical routines

Multiplication and Division

I obtained the next four sub-routines from magazines
and books. They are fast and economical of memory
and have shown themselves to be useful in a wide
range of programs. They are offered as candidates
for a library. In all cases the abbreviation '(a)'
means "the content of the A register®, and ‘'GD!'
means "the content of the HL register pair", etc.

It is not possible to standardise on which registers
shall contain the original numbers because of the
unique role that plays 1n additions and
subtractions, though you could add extra instructions
to achieve standardisation if it seemed desirable.
There is no need to have both the 8- and the 16-bit
versions in memory at the same time because the
latter will perform the same function as the former
if the High Bytes are first set to zero, though the
calculation time will be a little longer.
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8-bit multiplication
This multiplies (¢h) by (e) and gives the result in HL.

ld d, 0 22 0

ld 1, ¢ 46 O th) x (e) -+ (hl)
ld b, 8 6 8

add hl, hl 41

Jjr ne 1 48 1

add hl de 25

djnz -6 16 250

ret 201

8-bit division

This divides (d) by (e) and gives the result in D
with any remainder in A.

ld b, 8 6 8

Xor a 175

sla d 203 34 d)/(e) » (d) + (a)
rl a 203 23

cp e 187

ir ¢ 2 56 2

sub a, e 147

inc d 20

dfnz -11 16 245

ret 201

16 » 32-bit multiplication

This multiplies (bc) by (de) and gives the result in
HLDE. If the product 1s certain not to exceed 65535
then HL can be ignored and the result taken from DE.
For larger results, the total is 65536x(hl) + (de).

ld hl © 33 0 ©

ld a, 16 62 16

bit 0 e 203 67 (bc) x (de) - (hlde)
Jr z 1 40 I

add hl bc ]

srl h 203 60

rr 1 203 29

rr d 203 26

rr e 203 27

dec a 61

Jjr nz -16 32 240
ret 201
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16—bit division

This divides (bc) b{ (de) and gives the result in BC
with any remainder in HL

ld hl © 33 0 0

ld a 16 62 16

scf 55 (bc)/ (de) -» (bc) + (hl)
rl ¢ 203 17

rl b 203 16

adc hl de 237 106
sbc hl de 237 82

Jr nc 2 48 2
add hl de 25

dec ¢ 13

dec a 61

Jr nz -16 32 240
ret 201

32-bit Calculations

8- and 16-bit calculations are suitable for most
purposes, but occasionally they do not offer adequate
precision. Fortunately it is not difficult to provide
sub-rs that operate on 24— or 32-bit numbers, though
they are noticeab%Y slower when many 1terations have
to 'be invoked. y preference is that, rather than
have both 24- and 32-bit available together, I
provide for only 32-bit because these can do the
work of both. 32-bit division is used in, among
other things, calculating pseudo-random numbers as
described later.

From the discussions in chapter 2, it will be obvious
that 32-bit numbers occupy four bytes. In all cases
of referring to ‘pointing to' such a number by HL,
say, I will mean that the number is in memory and HL
contains the address of the least significant byte of
the number. This will also be the lowest of the four
addresses that the number occupies.

32-bit Addition

The following sub-r allows addition of two 32-bit
numbers that are currently in memory. Before callin
the sub-r, their low bytes are pointed to by HL an
by DE respectively. The result is given in DEHL @
contains the most significant byte of the result, and
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L the least significant).

ld a (de) 26 Lowest byte into A.
add a (hl) 134 # Add other lowest byte
ld c, a 79 and store in C

inc hl 35 Point to next

inc de 18 two bytes

1d a (de) 26 and

adc a (hl) 142 * repeat

ld b, a 71 storing in B.

push bc - 197 Save the 2 bytes on stack
Inc hl 35 Point to the next

I1nc de 19 two higher bytes,

ld a (de) 26 and

adc a (hl) 142  # repeat.

ld ¢, a 79

Inc hl 35 Point to the two

inc de 19 highest bytes

1d a (de) 26 etc.

adc a (hl) 142 #

ld d, a 87 Put the two highest

ld e, c 89 bytes of result in DE.
pop hl 225 And 2 lowest into HL
ret 201

32—b1t(Subtraction

This follows the same pattern as the addition, but
the addition operations marked with '#' are changed
to subtractions, ie.
‘add a,(hl) 134' becomes ‘'sub a,(hl) 150°¢,
& ‘'adc a,(thl) 142°' becomes ‘sbc a,thl) 158°.
The number ?ointed to by HL 1is subtracted from the
one pointed to by DE.

32-bit Multiplications

The following suite of 2proErams allows three kinds of
multiplication of the 32-bit number pointed toc by HL

1. multiplication by the content of A; START!
or 2. by the content of DE; START2
or 3. by a second 32-bit number which is pointed
to by DE; START3

A l4-byte scratch gad is required the lowest address
of which I will call (P,P), and the sub-r for 32-bit
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addition is needed. If the result would be too lar§e
to fit into 32 bits then the calculation S
terminated and Cy 1s returned set. Otherwise the
result 1s returned in HLDE (and in the highest four

bytes of the scratch pad), and Cy is returned reset.

START!:
ld de PAD+4 17 P+4 P Transfer the 'HL N2'
1d bc 4 1 40 into the
ldir 237 176 Pad.
ld (PAD), a 50 P P Put (a) into PAD.
ld b, 8 6 8 Count of 8 bits in B
Jr ZERO 24 15 Go to 'Calculation’.
STARTZ:
push de 213 Save (de)
ld de PAD+4 17 P+4 P Transfer the 'HL N2'
ld bc 4 140 into the
ldir 237 176 Pad.
go hl 225 Recover (de) into HL
(PAD), hl 34 P P and put into Pad.
ld b, 16 6 16 Count 16 bits in B
Jr ZERC 24 20 Go to 'Calculation'.
START3:
ush de 213 Save (de).
d de PAD+4 17 P+4 P Transfer the 'HL N2’
ld bc 4 1 40 Into the
ldir 237 176 Pad.
pgp hl 225 Recover (de) into HL
1d de PAD 17 P P and copy the
ld bc 4 140 32-bit "DE N9'
ldir 237 176 Into the Pad.
ld b, 32 6 32 Count 32 blts in B
ZERO:
ld hl 0 33 0 0 Zerolse
1d (PAD+8)hl 34 P+8 P the rest
1d (PAD+10)hl 34 P+10 P of the
1d(PAD+12)hl 34 P+12 P Pad.
CALC:
ld hl PAD+3 33 P+3 P Polnt top byte of
srl (hl) 203 62 the multiplier
dec hl 43 and
rr ¢hl) 203 30 rotate
dec hl 43 each least signif
rr (hl) 203 30 bit

continued on next page....
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dec hl 43 in turn

rr (hl) 203 3 into Cy.

Jr nc 19 48 19 If bit reset jump on.
push bc 187 Else save bit count.
ld hl PD+10 33 P+10 P  And add multiplicand
ld de PD+4 17 P+4 P into

call 32-Add 205 R R the result

1d(PD+10)hl 34 P+10 P
l1d(PD+12>de 237 83 P+12 P

pop bc 193 Recvr bit count but 1If
ret c 216 addtn ovrflow, exit
ld hl PD+4 33 P+4 F Rotate the

sla (hl) 203 38 multiplicand

inc hl 35 to the

rl (hl) 203 22 left

inc hl 35 in

rl (hl) 203 22 five

Iinc 35 ?gtes

rl (hl) 203 22 th 1s to test

inc hl 35 for overflow)

rl (hl) 203 22

1d hl (PAD) 42 P P Test

ld de(PAD+2) 237 891 P+2 P the

1d a, 1 125 multiplier.

or ‘h 180 If all

or e 179 bytes

or d 178 now zero

Jr z END 40 10 then finish.

ld a(PAD+8) 58 P+8 P Test 'fifth byte'

or a 183 of the multiplicand
ir z 2 40 2 if not O (ovrflow)
scf b5 then set Cy

ret 201 and finish

djnz CALC 16 181 Else rept count not 0
ld hl(PD+10) 42 P+10 P Transfer result
ld de(PD+12) 237 91 P+12 P  1into DEHL

or a 183 Reset Cy

ret 201 And finish.
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32-Bit Divisions

The following three programs allow divisions of the
32-bit number pointed to by HL similar to the
nultiplications described above:

1. Division by the content of A;
or 2. By the content of DE; START2.
or 3. By 32-bit num pointed to by DE;

START!1.
STARTS3.
The 32-bit subtraction routine 1s needed, as is an

18-bit scratch-pad whose lowest address is (P,P). If
the divisor 1is the larger of the two (ie. the result

would be less than 1)

hen the division is terminated

and Cy returned set. Otherwise Cy is reset and the
resulf is returned in DEHL <(and at the top of the
scratch—pad).
START!:

ld de PAD+4 17 P+4 P 'HL number'

ld bc 4 1 40 into

ldir 237 176 Pad.

ld (PAD) a 50 PP (a) into Pad.

ld hl O 33 00 Zerolse

ld (PAD+1)hl 34 P+1 F rest of

1d (PAD+2)hl 34 P+2 F divisor

Jr TEST 24 19 Go to Calculation
STARTZ:

push de 213 Save (de).

ld de FAD+4 17 P+4 P ‘HL number’

ld bc 4 140 into

ldir 237 176 Pad.

pgp hl 225 Recover (de) in HL

1d (PAD)h1 34 PP and put into Pad.

ld hl 0 33 0 0 Zerolse

ld (PAD+2)hl 34 P12 P rest of divisor.

Jr TEST 24 18 Go to Calculation.
START3:

push de 213 Save (de).

ld de PAD+4 17 P+4 P 'HL number'’

ld bc 4 4 0 into

ldir 237 176 Pad.

pgp hl 225 Recover (de).

ld de FAD i7 P F 'DE number'’

1ld bc 4 140 into

ldir 237 176 Pad.

continued on next page....
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TEST:
ld hl PAD 33 PP If divisor 1s the
ld de PAD+4 17 P+4 P smaller of two
call 32 SUB 205 S S then exit
ret ¢ 216 with Cy set.
ZERO:
ld a 10 62 10 Zerolse
ld hl PAD+8 33 P+8 P rest
ld (hl) © 54 ¢ of
inc hl 35 Pad
dec a 61
Jr nz -6 32 250
ld b 32 6 32 32 bits until
divisor 1s empty
CALC:
ush bc 197 Save count.
ld a 13 62 13 13 bytes to rotate.
ld hl PAD+4 33 P+4 P Rotate
sla (hl) 203 38 13 bytes
inc hl 35 leftwards
rl (hl) 203 22
dec a 61
Jr nz -6 32 250
1d hl PAD 33 FP P Subtract divisor
ld de PAD+8 17 P+8 F from rotated
cgll 32 SUB 205 S S bytes
Jjr ¢ 12 56 12 If divsr smaller
then fump on
ld (PAD+8)hl 34 P+8 P Else put

ld (PAD+10)de 237 83 P+i10 P remainder into

ld hl PAD+14 33 P+14 P rotated bytes &
set O (hl) 203 198 count ! 1in result
pop bc 183 Recover bit count
djinz CALC 16 216 and repeat not 0
ld hl(PAD+14) 42 L+14 H Put result

ld de(PAD+16) 237 91 L+16 H into 'dehl’,

or a 183 reset Cy

ret 201 and finish.

SIN and COS

Calculating the precise values of Sin and Cos for any
angle 1s a complex business involv1n§ evaluatin,
series in which the values are in the form o
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floating-point  numbers. Not  onl is this
operationally difficult but programs making use of it
are slowed down quite noticeably, and the technique
is not suitable in, for example, tactical and
strategic games where lots of positions, courses, and
distances apart have to be evaluated as quickly as
possible.

Fortunately there is a fast alternative if you are
willing to accegt a modest amount of approximation.
In this case the approximation still provides an
angular discrimination of a degree {(or better if you
insist), and results to an accuracy of tighter than
0.5%. The solution 1is to use 'a table of pre-
calculated values and use the value of the angle as
a pointer to the table; and fortunately it isn't
necessary to provide Sin and Cos with a table each as
their values are the same except for being 90° out
of phase.

As both Sin and Cos always have values of 1 or less
they can't be stored as such in single bytes, but you
can’ use the device of multiplying by 255. This puts
255 into the table when Sin has a value of 1.000, and
zero into the table when Sin 1is zero. The table
values are therefore accurate to *1 in 255, or about
0.4%, which 1s conveniently similar to the angular
discrimination of *1 in 360, or about 0.3%. The fact
of having multiplied by 255 is taken iInto account in
the calculations that follow the use of the table.
You can increase the angular discrimination to any
required level by increasing the length of the table
in Proportion, but the accuracy of the table content
can't be improved without using two bytes ger entry,
which would allow an accuracy of *1 in 65535. A
real doublin§ of accuracy would therefore require a
table four times as long.

The table need be only 451 bytes long and gives a
result for each whole degree from 0-360° for both
Sin and Cos. Given that the table starts at ADDR, it
is filled by using the following BASIC command :

defint z:

for n = 0 to 450:

z = cint (255 # sin(n/57.286))
poke (ADDR + n), z:

next

The routine that accesses the table simultaneously
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obtains a wvalue for both Sin and Cos, and also
?rovides the sign of each result. It reads the angle
rom where it is stored in the Variables and puts its
results back in there. An angle larger than 360° has
360 repeatedly subtracted from it until the result is
less than 360. This value is used in the calculation.
The next set of addresses from those used earlier
are:

51212 (12,200) Lo Value of the
51213 (13,200) Hi angle (0 to 360)
51214 (14,200) Cos x 255
51215 (15,200) Sin x 255
51216 (16,200) Sign flags
For two positive results the sign flags are reset

ives bit N2 O set

(flag value = 0). A negative Cos
in gives bit N2 1

(flag value = 1), and a negative

ld (51212)hl

ex hl de

34 12 200
235

Evaluate the signs :-

set (flag value = 2). Both flags are set if both Sin
?nd Cos are negative (flag value = 3). The routine
St
Initialise :-
ld bc 0 1 0 0 BC will take the flags
ld h1¢51212) 42 12 200 Put angle into HL
ld de 360 17 104 1
or a 183 Reset Cy and
sbc hl de 237 82 subtract 360
Jr nc -4 48 252 until result negtive
add hl de 25 then add back 3560

and store result.
Transfer angle to DE.

ld hl 270 33 14 1 If the angle 1s

or a 183 more than 270°

sbc hl de 237 82 or

Jr c 8 56 68 less

ld hl 90 33 90 0 than 90°

sbc hl de 237 682 then jump on,

Jjr nec 1 48 1 else set the flaé
inc ¢ iz (for a negative C0S)
1ld hl 180 33 180 0

or a 183 If 1t 1s ¢ 180 then
sbc hl de 237 82 Jump on,

ir nc 2 48 2 else set the fla

ld b 2 6 2 (for a negative S5IN)
ld a, ¢ 121 Put COS flag Into A

continued on next page....
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add a, b 128 add the SIN flag

ld (51216Ja 50 16 200 and store.
Calculate SIN :-

1d hl ADDR 33 § 8§ SIN-table strt in HL

add hl de 25 and add the angle.

1d a (hl) 126 Extract the SIN byte

ld (51215)a 50 15 200 and store.
Calculate COS : -

1d hl ADDR+90 33 C C COS-table strt 1in HL

add hl de 25 and add the angle.

ld a (hl) 126 Extract the COS byte

ld (51214’a 50 14 200 and store.

ret 201

A common use of Sin and Cos is to assess changes in
co-ordinate values, and testing the sign bits will
indicate whether the changes should be positive or
negative, 0° being taken as 'due North'.

There are a number of ways 1n which the routine
could be modified for better speed or to operate with
a shorter table, but this presentation gives the best
view of the principle. Different values loaded into
HL in "“Evaluate the signs" would allow for other
orientations, such as 0° Is 'due East’.

Square Roots

Square roots can be dealt with as for SIN and COS
except that the table holds squares and contains
2-bytes per entry. It is the location of the square
that indicates the size of the square root. To
obtain integer square roots up to 255 the table
should contain n + 0512 for 0255 [not the
squares of the integersl. You step through the table
two bytes at a time until you find the first entr
that is larger than the number whose root you wis
to know. he count of the steps is the required
gzggge root. The table 1s most easily filled from

Page 194 of the June '88 issue of "Personal Computer
World" describes a method of finding any power of a
number and the second to seventh root of a number by
direct computation, but the calculation of the roots
i1s slow. Square roots are of interest in calculating
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the distance apart of two co-ordinate pairs for use
in games etc, though often you can compare the two
squares of two distances and avoid square roots
entirely.

Displaying numbers

Almost every program needs to disp1a¥ numbers on the
screen or through the printer. n developing a
routine for this we will limit our consideration to
numbers up to 65535, though the priciples described
can be extended to numbers of any size.

When a number 1is in the computer it will be in 1- or
2-byte form and this must first be converted to
decimal digits. This could be accomplished by
dividing 1t first by 10,000 and using the resulting
integer as the first digit, then multiplying the
fraction by 10,000 and div din§ it by 1000 <(which is
the same as multiplying it by I0), etc., etc.

However my choice 1is to use repeated subtraction
first of 10,000, then of 1000, then of 100, then of
10, thus leaving the units as the remainder. This
will be slower than using division in the cases of
large digits but faster for small ones.

When the decimal digits have been calculated they
need to be converted to the ASCII codes of their
numerals so that the numerals can be printed.
Inspection shows that the ASCII code for "O" 1s 48,
for "“1" is 49, for "2" is 50, etc. Hence the ASCII
code 1is obtained by adding 48 to the digit, and this
can be done as part of the calculational procedure.
The program 1s in two parts, one as a sub-routine of
the other. I have called the sub-routine "“Calcdig";
separating 1t off avoids unnecessary repetition of
the same code sequences for each digit.

The resulting ASCII codes will be stored in the
Variables area, which I will assign to page 200 [ie.,
it starts at 51200; (0,200); C800hl. aturally you
will put yours where it is most convenient.

51200 (0, 200> 27 DEFB
51201 (1,200) 89 DEFB
51202 (2,200) 1n print-line N2
51203 (3,200) col rint-colm N2

51204 (4,200) ASCII of Ten Thousands
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51205 (5,200 ASCII of Thousands

51206 (6,200) ASCII of Hundreds

51207 (7,200) ASCII of Tens

51208 (8,200 ASCII of Units

51209 (9,200) 255 DEFB

51210 (10,200 Lo Number to

51211 11,2002 Hi be processed

In addition to the required ASCII codes, I have also
inserted the bytes necessary to produce a ‘print-
position' string so that the resulis can be {)rinted
at any screen location. (See pages 70 and 71

The last two bytes are the Lo- and the Hi-byte of
the number whose digits we want. It 1is not
necessary to have this in memory for our present
gurp?ses,igut you may have other reasons for wanting
o store it.

The main routine proceeds as follows :

Startl:
1d h1(51210) 42 10 200 Collect number
Start2:
ld de 10,000 17 16 39 (Num already in HL)
call 'Calcdg' 205 N N Calc the Ten-thous
ld (51204>a 50 4 200 Store the digit
ld de 1000 17 232 3
call 'Calcdg’' 205 N N Calc the thousands
ld (51205)a 50 5 200 Store the digit
ld de 100 17 100 ©
call 'Calcdg’ 205 N N Calc the hundreds
1d (51206>a" 50 6 200 Store the digit
1d de 10 17 10 0
call ‘'Calcdg’ 205 N N Calculate the tens
1d (51207>a 50 7 200 Store the di@it
1d a, 1 125 Put units inio A
add a, 48 198 48 Convert to ASCII
ldt(51208)a 2818 200 Store the digit
re

In each case DE is loaded with the rank of the digit
to be calculated (10,000; 1000; 100; or 10) prior to
calling ‘'Calcdig'. ‘Calcdig' returns the ASCII value in
A which is then stored by the main dpro ram in the
proper place in memory. ~ At the end, the previous
subtractions will have "left the units in HL, ie. in L,
so this is moved into A and there converted to the
ASCII code before being stored. The sub-routine
‘Calcdig' is as follows :
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xor a 175 Zerolse A & reset Cy
inc a i 60 Increase the count

sbc hl de 237 82 Subtr digit rank in DE
Jr nc -5 48 251 Repeat 1f no carry

add hl de 25 Else restore last subtr
dec a 61 and last count incr.
add a, 48 188 48 Convert to ASCII

ret 201 and ret to main.

The accumulator is to be used to count the number of
‘hundreds’, ‘tens’, etc., so it 1s first zeroised and
the Carry flag reset by 'xor a'. A small loop now
repeatedly subtracts the wvalue in DE from what
is"left "in HL, and A counts the number of
subtractions. tf the subtraction takes the result
below zero then Cy will become set thus telling us
we have gone too far. We therefore add DE back to
HL once and take one off the count. The count in A
is converted to the appropriate ASCII code and this
is taken back to the main routine for storage by it.

The ASCII codes are now all in their proper sequence
in memory ready for printing. (See chaps 7 & 8.

Pseudo—random numbers

The term 'generating random numbers' means something
like “outputtingna sequence of numbers one at a time
in such a way that:

a) the values all fall within specified size limits

b) a large set would contain a roughly equal
frequency of all the allowed members

c) there is no way of predicting a future value”.

In practice the inconvenience of meeting all these

conditions 1is too great and the last one 1s usually

niﬁxigedé a set of ‘pseudo-random' numbers being used
stead.

These are not random at all; on the contrary their
sequence 1s entirely predictable though to a user
they seem adequately ‘mixed up’, and, if there are
enough of them, and if operations start at different
places in the sequence at different times, then they
appear to be random.
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A set of pseudo-random numbers in the range O to
65535 will be generated if the following sequence of
operations 1s performed each time a new one is
required. Any member of the set may be used as the
starting point or ‘'seed', and each new product acts as
the seed for the next. The calculation 1s often
erformed on the floating-peint forms but 24- or 32-
it arithmetic can achieve the same effect more
conveniently.

Add 1

Multiply by 75

Extract MOD 65537 (divide by 65537 and
use the remainder)

Subtract 1

Random numbers

There is no way in which a calculational procedure
can OU%?Ut a sequence of truly random numbers from
the PCW, though randomness, or rather ‘unpredict-
ability', can be extracted from human activit¥ and
coupled with calculation in such a way thal the
conditions stated above can be satisfied. In the
following two examples the value stored at °‘ADDR' has
a constant added repeatedly to 1t, but the additions
cease when a ke¥ is pressed. As both the current
value and the time lag are unknown, the new value
cannot be predicted. This is as adequate for all
chance- or risk- simulations as die-rolling or coin-
tossing would be.

The next sub-routine produces a random spread of

values in the range 0 to 255. The cycle time is
about 0.5 milli-seconds.
ld a, (ADDR) 58 A A Take current 'seed’.
add a, 13 198 13 Add 13
ld (ADDR>,a 50 A A and replace in mem
id ¢ 11 14 11 Test for a
call BDOS 205 5 0 key-press
or a 183 (see page 61).
Jr z —16 40 240 If none "repeat addn
ret 201 Else finish.

Adding 13 rather than 1 reduces the risk of
‘clumping' that is faintly conceivable if extremely
short time-lags should occur. Addin§)13 or 1 gives
an excellent spread to the results, but adding most
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other values deoes not. If the sub-routine were to
treat a High-byte and a Low-byte simultaneocusly by
adding 13 to one and 1 to the other, then random
values in the range O to 65535 would be obtained.

Die throwing

To simulate die-throws in the range 1 to 6, the
following sub-r limits the values that may occur in A
and hence in the result. The simultanecus throwing
of say three dice 1is best simulated by three
independent calls of the sub-routine. Attempts to
obtain three simultanecus die values invariably means
that the values for the individual dice cannot
independent of each other, though if the value for
the first is derived as below and of the other two
from subsequent use of pseudo-random numbers then
the dependence need not be noticeable.

ld a, (ADDR> 58 A A Take current 'seed’
inc a 60 and add 1.

cp 7 254 7 If in range (not>6)
Jjr ¢ 2 56 2 then jump on,

ld a 1 62 1 else restore to 1
ld (ADDR), a 50 A A & replace in mem
ld ¢ 11 14 11 Test
call BDOS 205 5 ¢ for a

or a 183 key-press.
Jr z =21 40 235 If none repeat

ret 201 else finish.

Binary Coded Decimal

BCD allows frecise calculation with large numbers.
Whilst calculation in the floatin% point form may be
accurate to one in a million or fwo, this may not be
enough in some applications such as accountancy
which needs to take care of the pence even in sums
amounting to hundreds of millions of pounds.

For us decimal thinkers the complication of binar
originates from the fact that bytes count in 256's.
BCD starts with the idea of storing only decimal
digits in them so that each one of a sequence of
addresses could be treated exactly like the columns
in conventional arithmetic. You can then record
numbers of any size (and therefore obtain any level
of accuracy) Just by devoting extra addresses to
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them. It then refines this concept by taking note of
the fact that the numbers up to 9 require only four
bits so that two of them can be stored in an 8-bit
b¥te. This halves the amount of memory required to
store numbers, but the principle of calculating in
tens is adhered to because manipulations are always
carried out on half-bytes. And guess what half a
byte is called. Any l1deas ? That's it: a nibble.
That's official, honest !

Because it is nibble-based, BCD requires three extira
instructions; 'daa’, 'rrd’ and ‘rld‘', and it also has its
own flag called ‘half-carry' which is set if additions
or subtractions in the four rightmost bits of A give
rise to overflow into bit N2 4. The instruction ‘daa‘
causes a nibble overflow if approgriate by adding 6
to both nibbles of A and then subtracting it again.
Supgose A contains 9 and 1 or more is added to it.
In BCD this should give overflow into the nibble on
the left though the accumulator won't automaticall
ive this because its four rightmost bits can hold 1
efore overflowing. However adding 6 as well pushes
overflow into the left nibble thus incrementing its
content and setting the half—carry flagt. If the left
nibble also overflows following ‘daa' then this will
be reflected in Cy. ‘

A full description of BCD wouldn't be appropriate
here, but 1if you are interested you might like to
build up your own set of BCD routines based on the
examples of addition and subtraction given below.

The convention I have adopted makes it possible to
handle numbers up to 127 bytes long (254 digitsh
preceded by a sign byte which is zero for 'positive’
and 255 for ‘negative’. First you need to allocate a
memorz block for storage of the numbers and 1t is
best to draw this out so that you have clear picture
of what each address is for. "~ In multiplication and
division extra blocks are needed for the product or
quotient, plus a scratch pad for making a note of
which stage has been reached. The registers are
used as follows :

On entr%: (b)=0. (c)=number of bytes not including the
sign e used for each number, ie. half the maximum
number of digits that each number may have. HL and
DE point to where each number is stored in memory
(they point to the sign byte).
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On_exit: The result is pointed to by HL and the carry

lag 1s set if there is any overflow. Negative
results will be in ‘tens complement’, ie. ready to
give correct results by simple addition.

BCD Addition

add hl bc g Make DE point to right
ex hl de 235 most byte of 1st num
add hl bc 9 Make HL point to right
ld b, ¢ 65 most byte of 2nd num,
put byte count in B.
1d a (de) 26 Add two bytes incl any
adc a, (hl) # 142 carry and apply
daa 39 decimal adjfustment.
1d (de) a 18 Store resulting byte
dec de 27 and point to the two
dec hl 43 next bytes to left.
djnz -8 16 248 Repeat until count O
ex hl de 235 point HL to result.
ret 201

BCD Subtraction

The sub-r for BCD subtraction is identical to the one
above except that the 6th instruction (#) should be
changed to :

sbc a, ¢ 158

You will see from the complexity of such simple
operations that BCD 1is nothing 'like as fast as
conventional Z80 arithmetic. This is the price paid
for its ability to handle many digits. lthough I
have spent many happy hours developing routines to
manipulate BCD numbers, I have never used them and
don't ever expect to. My accounts programs, which
count gennies, are based on 32-bit arithmetic and can
deal with values up to about £43 million.
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1d (Addr),a 50 N N ld b, a 71
1d (Addr),hl 34 NN l1d b, ¢ 65
1d (Addr),bc 237 67 N N 1d b, d 66
1d (Addr),de 237 83 N N 1d b, e 67
1d (Addr),sp 237 115 N N 1d b, h 68
1d b, 1 69
1d a, (Addr) 58 N N l1d b, N 6 N
1d hl, (Addr) 42 N N
1d bc, (Addr) 237 75 N N ld ¢, a 79
1d de, (Addr) 237 91 N N ldc, b 72
1d sp, (Addr) 237 123 N N ld c, d 74
ld c, e 75
1d a, N 62 N ld ¢, h 76
1d hl, N 33NN ld c, 1 77
1d bc, N N 1 NN 1d c, N 14 N
1d de, N N 17 N N
1d sp, NN 49 N N ld d, a 87
1d sp, hl 249 ld d, b 80
1d d, ¢ 81
1d a, (bc) 10 1d d, e 83
1d a, (de) 26 ld d, h 84
1d a, (hl) 126 ld d, 1 85
1d d, N 22 N
1d (bc), a 2
1d (de), a 18 ld e, a 95
ld e, b 88
1d (hl), a 119 Id ey ¢ 89
1d ¢(h1), b 112 ld e, d 90
1d (hl), ¢ 113 ld e, h 92
1d ¢(hl), d 114 ld e, 1 93
1d ¢(hl), e 115 ld e, N 30 N
1d -¢hl), h 116
1d ¢(hl), 1 117 1d h, a 103
1d (h1), N 54 N 1d h, b 96
1d h, c 97
1d a, <hl) 126 1d h, d 98
1d b, ¢hl) 70 1d h, e 99
1d ¢, (hl) 78 1d h, 1 101
1d 4, <hl) 86 1d h, N 38 N
1d e, <hl) 94
1d h, ¢hl) 102 1d 1, a 111
1d 1, ¢hl) 110 1d1, b 104
1d 1, € 105
1d a, b 120 1d 1, d 106
1d a, ¢ 121 1d 1, e 107
1d a, d 122 id 1, h 108
1d a, e 123 1d 1, N 46N
1d a, h 124
1d a, 1 125
1d a, N 62 N



Decimal opcodes

151

1 — o] [l — k0 [0}
srl a 203 sla a 203 39 a 203
srl b 203 sla b 203 32 b 203
srl c 203 sla c 203 33 c 203
erl d 203 sla 4 203 34 d 203
srl e 203 sla e 203 35 e 203
srl h 203 8la h 203 36 h 203
srl 1 203 sla 1 203 37 1 203
srl ( 203 sla ( 203 38 (hl) 203

! [cy] cy) - 0

rr a 31 rl a 23

rr b 203 24 rl b 208 16
Ir ¢ 203 25 rl c 203 17
rr d 203 26 ri d 203 18
T e 203 27 rl e 203 19
rr h 203 28 rl h 203 20
rr 1 203 29 rl 1 203 21
rr (hl) 203 30 rl ¢ 203 22

-~

rrc
rrc
rrec
rrc
rrc
rrc
rrc
rrc

oP

AP0 Q0

15

203 8
203 9
203 10
208 11
203 12
203 13
203 14

rlc
rlc
rlc
rlc
rlc
rlc
rlc
rle

oe

A OO0

203
203
203
203
203
203
203

U eELN O
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add hl, bc add a,a 135 adc a,a 143
add hl,de 25 add a,b 128 adc a,b 136
add hl,hl 41 add a,c 129 adc a,c 137
add hl,sp 57 add a,d 130 adc a,d 138
add a,e 131 adc a,e 139
adc hl,bc 237 74 add a,h 132 adc a,h 140
adc hl,de 237 90 add a,l 133 adc a,l 141
adc hl,hl 237 106 add a, (hl) 134 adc a, (hl) 142
adc hl.sp 237 122 add a,N 198 N adc a,N 206 N
sub a,a 151 sbc a,a 159
sub a,b 144 sbc a,b 152
sbc hl,bc 237 66 sub a,c 145 sbc a,c 153
sbc hl,de 237 82 sub a,d 146 sbc a,d 154
sbc hl,hl 237 98 sub a,e 147 sbc a,e 155
sbc hl,sp 237 114 sub a,h 148 sbc a,h 156
sub a,l 149 sbc a,1 157
sub a, (hl) 150 sbc a, (hl) 158
sub a,N 214 N sbc a,N 222 N
Comparisons
cp a 191 and a 167 or a 183 Xor a 175
cp b 184 and b 160 or b 176 xor b 168
cp ¢ 185 and ¢ 161 or ¢ 177 xor ¢ 169
cpd 186 and d 162 or d 178 xor d 170
cp e 187 and e 163 or e 179 Xor e 171
cp h 188 and h 164 or h 180 xor h 172
cp 1 189 and 1 165 or 1 181 xor 1 173
cp (hl) 190 and (hl) 166 or (hl) 182 xor (hl) 174
cp N 254 N and N 230 N or N 246 N xor N 238
N
Increment and Decrement
inc bc 3 inc a 60 dec a 61
inc de 19 inc b 4 dec b 5
inc hl 35 inc 12 dec ¢ 13
inc sp 51 inc d 20 ~dec d 21
inc e 28 dec e 29
dec bc Ll - inc h 36 dec h 37
dec de 27 inc 44 dec 1. 45
dec hl 43 inc (hl) 52 dec (hl) 53
dec sp 59
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call N N
call ¢ NN
call nc N N
call z NN
call nz N N

Jjp NN
Jpc NN
Jpnc NN
Jjpz NN
jpnz NN
Jp <hl)

ccf
cpd
cpdr
cpi
cpir
cpl

daa
djnz N

205
220
212
204
192

195
218
210
202
194
233

63
237
237
237
237
47

39

16 N

ZzEZzZ=
ZEZZZZ=

EZEExzEZ=Z= =
ZZzZE=

169
185
161
177

ret 201
ret ¢ 216
ret nc 208
ret 2 200

ret nz 192

Jr N 24 N
jr c N 56 N
Jr nc N 48 N
jr z N 40 N
Jr nz N 32 N
djnz N 16 N

ex hl de 235
ex (sp) hl 253

in a, (P) 219 N

lddr
ldir

237 184
237 176

1853

pop af 241
pop bc 193
pop de 209
pop hl 225

push af 245
push bc 197
push de 213
push hl 229

neg 237 68
nop 0

out (P),a 211 N
rid 237 111

rrd 237 103
scf 55
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bit 0,8 203 71 bit 1,4 203 79 bit 2,a 203 87 bit 3,8 203 95
bit 0,b 203 64 bit 1,b 203 72 bit 2,b 203 80 bit 3,b 203 88
bit 0,c 203 65 bit 1,c 203 73 bit 2,¢ 203 81 bit 3,¢ 203 89
bit 0,4 203 66 bit 1,d 203 74 bit 2,d 203 82 bit 3,d 203 90
bit 0,e 203 67 bit 1,86 203 75 bit 2,& 203 83 bit 3,& 203 91
bit 0,h 203 68 bit 1,h 203 76 bit 2,h 203 84 bit 3,h 208 92
bit 0,1 203 69 bit 1,1 203 77 bit 2,1 203 85 bit 3,1 203 93
bit 0,(h1)203 70 bit 1,(h1)203 78 bit 2,(h1)203 86 bit 3,(h1)203 94
bit 4,8 203 103 bit 5,a 203 111 bit 6,8 203 119 bit 7,8 203 127
bit 4,b 203 96 bit 5,b 203 104 bit 6,b 203 112 bit 7,b 203 120
bit 4,c¢ 203 97 bit 5,6 203 105 bit 6,c 203 113 bit 7,¢ 203 121
bit 4,4 203 98 bit 5,d 203 106 bit 6,d 203 114 bit 7,d 203 122
bit 4, 203 99 bit 5,e 203 107 bit 6, 203 115 bit 7,& 203 123
bit 4,h 203 100 bit 5,h 203 108 bit 6,h 203 116 bit 7,h 203 124
bit 4,1 203 101 bit 5,1 203 109 bit 6,1 203 117 bit 7,1 203 125
bit 4,(h1)203 102 bit 5,(h1)203 110 bit 6,(h1)203 118 bit 7,(h1)203 126
set 0,2 203 199 set 1,2 203 207 set 2,8 203 21§ set 3,2 203 223
set 0,b 203 192 set 1,b 203 200 set 2,b 203 208 gset 3,b 203 216
set 0,c 203 193 set 1,¢ 203 201 set 2,¢ 203 209 set 3,¢ 203 217
set 0,d 203 194 set 1,d 203 202 set 2,d 203 210 set 3,d 203 218
set 0,e 203 195 set 1,e 203 203 set 2,¢ 203 211 set 3,@ 203 219
set 0,h 203 196 set 1,h 203 204 set 2,h 203 212 set 3,h 203 220
set 0,1 203 197 set 1,1 203 205 set 2,1 203 213 gset 3,1 203 221
set 0,(h1)203 198 set 1,(h1)203 206 set 2,(h1)203 214 set 3,(h1)203 222
set 4,2 203 231 set 5,2 203 239 set 6,2 203 247 set 7,8 203 255
gset 4,b 203 224 set 5,b 203 232 set 6,6 203 240 set 7,b 203 248
set 4,c 203 225 set 5,¢ 203 233 set 6,c 203 241 set 7,¢c 203 249
set 4,4 203 226 set 5,d 203 234 set 6,4 203 242 set 7,4 203 250
set 4, 203 227 set 5,¢ 203 235 set 6,¢ 203 243 set 7,6 203 251
set 4,h 203 228 set 5,h 203 236 set 6,h 203 244 set 7,h 203 252
set 4,1 203 229 gset 5,1 203 237 set 6,1 203 245 set 7,1 203 283
set 4,(h1)203 230 set 5,(h1)203 238 set 6,(h1)203 246 set 7,(h1)203 254
res 0,a 203 135 res 1,2 203 143 res 2,a 203 151 res 3,2 203 159
res 0,b 203 128 res 1,b 203 136 res 2,b 203 144 res 3,b 203 152
res 0,¢ 203 129 res 1,c 203 137 res 2,c 203 145 res 3,c 203 153
res 0,4 203 130 res 1,d 203 138 res 2,d 203 146 res 3,d 203 154
res 0,e 203 131 res 1,8 203 139 res 2,8 203 147 res 3,& 203 155
res 0,h 203 132 res 1,h 203 140 res 2,h 203 148 res 3,h 203 156
res 0,1 203 133 res 1,1 203 141 res 2,1 203 149 res 3,1 203 157
res 0,(h1)203 134 res 1,(h1)203 142 res 2,(h1)203 150 res 3,(h1)203 158
res 4,a 203 167 res 5,a 203 178 res 6,a 203 183 res 7,2 203 191
res 4,b 203 160 res 5,b 203 168 res 6,b 203 176 ves 7,b 203 184
res 4,¢ 203 161 res 5,¢ 203 169 res 6,¢ 203 177 res 7,¢ 203 185
res 4,4 203 162 res 5,d 203 170 ves 6,d 203 178 res 7,d 203 186
res 4,¢ 203 163 res 5, 203 171 res 6, 203 179 res 7,8 203 187
res 4,h 203 164 res 5,h 203 172 res 6,h 203 180 res 7,h 203 188
res 4,1 203 165 res 5,1 203 173 res 6,1 203 181 res 7,1 203 189
res 4,(h1)203 166 res 5,(h1)203 174 res 6,(h1)203 182 res 7,(h1)203 190



Decimal opcodes

1855
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QPERATION TIMINGS

The follow ligt indicates the times of the common
ogerations, e numbers being in ‘T-states', each of
which corresponds to 0.25 micro-seconds.

adc a, N or (hl) 7 1d rr (Addr) 20
adc a, r 4 1d (Addr) rr 20
adc hi, rr 15 1d r, 7
ldr, r 4
add: as above except 1d (rr) a 7
add hl, rr 1 1d hl) r 7
1d r (hl) 7
and a, N or (hl) 7 1d a (Addr) 13
and a, r 4 1d (Addr) a 13
1d hl (Addr) 16
bit n (hl) 12 1d (Addr) hl 16
bit nr 8 ld rr, NN 10
call Addr 17 1dd 1ldi 16
lddr 1dir 16
ccf 4
neg 8
cp a, N or (hl) 7 nop 4
cp a, r 4
cpd cpi 16 or: see 'and’
cpdr cpir 16
pop 10
cpl 4 push 11
daa 4 res b, r 8
res b, (hl) 15
dec r 4
dec (hl) 11 ret 10
dec rr 6
rotate registers 8
dinz 13 rotate (hl) 15
ex hl de 4 rld rrd 18
inc: see ‘dec’ sbc: see ‘adc’
sub: see ‘add’
jp Addr 10
Jp ¢hD) 4 scf 4
Jjr 12
set: see 'res’
shift: see ‘'rotate’
xor: see 'and’

END.
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NEGATIVE NUMBERS

A satisfactory system for handling negative numbers
should make it possible to obtain the correct result
by additions of either negatives to each other or of
negatives to positives without needing to know
whether some negatives are involved, and it should be
ossible to establish the sign of a number by

spection of the sign bit. This is provided by the
so called ‘twos complement' system in which a binary
number 1s converted to 1its negative value b
complementing all its bits and then adding 1, whic
is the equivalent of subtracting it from zero.

Consider the example of subtracting 5 from 13. First
convert the 5 to its twos-complement and then add
the result to 13 (and ignore the overflow).

5 in_binary is: 00000101
Complement 1it, 11111010
and add 1 11111011
13 in binary is: 00001101
Add the negative, itiitoil
to give 00001000 which = 8
8 bits can represent numbers from +127 to -128.

16 bits can represent  +32767 to -32768 . A
positive &-bit number in A 1s converted to its
negative version by the instruction ‘neg', which
stands for “negate, the accumulator®. A negative
number would be converted b{ this to 1its positive
value. Both are numerically the same as subtracting
from 256. Thus to obtain the same effect as the
BASIC command ‘ABS' first test the eighth bit; if it
is set then use 'neg', otherwise not. The following
procedure negates (bc) and gives the result in HL:

or a 183 Cancel Cy.

sbc hl hl 237 98 Zerolse HL,

sbc hl bc 237 66 Subtract (bc) from O
ret 201

And the following transfers an 8-bit number from A
into HL whilst preserving its sign bit:

ld 1, a 111 Number into L.
rl a 23 Sign bit Into Cy.
sbc a, a 159 Propagate sign thru A &

ld h, a 103 load it into H. END
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BDOS FUNCTIONS

The following table lists the BDOS functions referred
to in the text together with the input required in DE
or E and the output given in A (or HL in the case of
N2 12). See text for N2 6. The function N2 1is
always put intoc C.

Fnc Input Qutput
N2~ Name (de) or (e) (ag Page
0 System reset = = 60
1 Consle Input = ASCII 61
2 Consle Ou gut ASCII = 64
5 List Outpu ASCII = 75
6 Direct Cons 1/0 = O=no key/ASCII 63
9 Print String Strg addr & 66
10 Read Consl Buff Buff addr (Txt in Buff) 64
11 Get Consl Stat - O=no key; 1=ke 62
12 Version Number # (Vers Nos in L 61
13 Reset Disc Sys - (Drives & DMA res) 122
15 Open file FCB addr 255=failure 108
16 Close file FCB addr 255=failure 111
19 Delete file FCB addr 255=failure 114
20 Read sequentl FCB addr O=success 113
21 Write sequentl FCB addr O=success 112
22 Create file FCB addr 255=failure 107
23 Rename file FCB addr 255=failure 117
26 Set DMA addr DMA addr - 110
33 Read Random FCB addr O=success 116
34 Write Random FCB addr O=success 116
40 Wrt Randm Zero FCB addr O=success 116
45 Set Disc Err M mode N© = 128
46 Get Disc fre sp (Fre in DMA) 123

110 Set/get delimtr ASCII/FFFFh (Mkr in A) 68
111 Print text blck CCB addr =

112 List text block CCB addr ~ 73
152 Parse Filename PFCB addr see text 167
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SCREEN ADDRESSES

The first requirement is to calculate ‘LINE' which is
the Cprintline N2 counting the top line as N2 0. In
BASIC the equivalent calculation would be

LINE = 31 - INT(Y/8)

though the value INT(Y/8) is also required and is
stored in C for later use [call this (c)1. If Y=0
then LINE=31, if Y=255 then LINE=0. The value of
LINE allows the start address of the print-line to be
obtained from Roller-RAM. The Roller-RAM address for
LINE=0 1is (0,182), for LINE=1 it is (16,182), etc.
Hence the Roller-RAM address is given by

RAM_ADDR = (0,182) + 16xLINE

The address of the start of the print-line can be
extracted from RAM_ADDR.

Consider the case where ‘X' = 0. If the value of 'Y’
is 7,15,23,31 . . or 255 (le. 7 + 8n for Om<31), ie. if
the required byte is at the top of a print-line, then
the line-address will the same as the screen—address.
If the byte is not at the top of the line then the
screen-address will be increased accordingly, the
increase being given by :

Correction = 7 - (Y - (31-LINE)x8)
=7-Y +

The final correction 1is for the value of %'
Starting at 'X'=0, seven increments in 'X' point in
turn to the bits of the leftmost screen byte, but
when 'X'=8 bit N2 O of the next-right screen’ byte is
pointed to. Athough this 1s only one byte fo the
right on the screen, it is 8 bytes further on in
memory. Hence an iIncrement of 8 to 'X' causes an
increment of 8 in the address, but smaller increments
in X' make no difference to it. This correction is
the equivalent of :

8xINT (X/8)

which could be calculated l?/ three right shifts of 'X*
[giving INT(X/8)]1 followed b three 1left shifts
(multiplying by 81, but the same effect is given more
simply by resetting the three rightmost bit of 'X'.END
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THE STACK & THE PROGRAM COUNTER

The stack 1is a small area of memory used for
temporary storage of information. It grows down-
wards from higher to lower addresses as each new
entry 1s made, and retreats upwards as entries are
removed. The start (highest address) is still called
the 'bottom of the stack’, and the end (lowest
address) is called the ‘top of the stack'.

The contents of register—;‘)airs can be stored in the
stack by the instruction ‘push'. They are retrieved
by ‘pop’'. Following ‘push hl' the sequence is:

SP 1is decremented.

the contents of H are copied into the
address peointed to by SP.

SP is decremented again.

the contents of L are coplied into the
address pointed to by SP.

W e

'Pop hl' follows the reverse procedure but the bytes
that HL fed onto the stack stay in place: 'pop' does
not remove them it onl¥ causes SP to point to the
previous entry, though they will be over-written by
any future ‘push’.

The location of the stack can be changed by putting
its new location into SP. When cheoosing a location
it is necessary to prevent other operations from
over—writing1 it, and vice versa. The area allocated
should be large enough to allow two bytes to be
added to it for each case of use, though this is
difficult to calculate and it 1s prudent to be
generous. Changin§ the content of SP can also be
used to access earlier entries in the present stack,
it being necessary to increment SP twice to point to
each earlier entry. This is the equivalent of writin
an extra ‘pop' into the rogram but withou
transferring anything into a pair of registers.

Restoring the Stac

Occasions arise when you need to re-balance the
stack, ie. to ignore unwanted data and restore it to
an earlier condition, but you don't want to go
through a possibly lengthy procedure of individual
‘pops‘, the required number of which may in any case
be uncertain. If you have defined your own stack
location then re-defining as before will cancel all
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intervening stack operations and take you back to the
stack you had at the start of the program. If you
are using the existing CP/M stack, or if you don't
want to go all the way to the start of your own
stack, then record the required stack-address in
memory and then re-load ©SP with 1t at the
appropriate moment.

If you find you can't ﬁet a satisfactory return to
either BASIC or to CP/M when your m/c program has
been run then you can be certain that you have an
unrequited ‘push’, ‘pop’, ‘call’ or ‘ret' somewhere. You
can temporarily solve the problem by makin our
first m/c instruction 'ld (N N),sp’' (tc record the last
address at which BASIC was operating), and make the
last instruction before the final 'ret'; 'ld sp,(N NO',
though temporary solutions are only temporary.

THE PROGRAM COUNTER

The program counter, PC, is a 16-bit register that
keeps frack of the address at which the next
operation is to be found. When the machine is
switched on or reset, PC 1s loaded with 000Oh so
operations always begin with the instruction at that
location, which 1s ‘'jp FCO3h'.

Each time the Z80 encounters an opcede it
interrogates it to establish the number of bytes in
the instruction. For most instructions this number
is added to PC, the instruction 1is executed, and the
new address in PC 1is then Jjumped to. If the
instruction 1is a ‘jp' the address immediately
followin§_ the opcode is copied intoc PC and operations
proceed tfrom there. For a 'jr' the byte following the
%ﬁcode is added to PC and operations proceed from
ere. :

For a 'call', the content of PC+3 1s put onto the
stack, SP is adjusted, and PC is loaded with the call
address. The 'ret' puts the top address from the
stack back into PC and adjusts SP. This is why it is
essential to have balanced everf 'E)ush' with a ‘pop’
(or to have pointed SP to the right entry) between a
‘call' and its ‘ret'. If you forget to do this before
a conditional ‘ret' you may get a crash on some
occasions but not on others and not be able to see
why. END
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SWITCHING MEMORY BANKS

The processor Ports

The Z80 makes contact with the outside world through
‘ports’, which «can pass bytes inwards to the
processor, or outwards from the processor to some
device connected to it.

There are two ways of operating the ports. In the
first the ‘'address' of the port iIs loaded into BC and
then either the ‘'in' instruction takes a byte from the
external device (a section of the keyboard, say) and
grt]xts it into a register; or alternatively the ‘out'

struction feeds e byte that is in the register
out into the external device. The mnemonics would be
as follows for the register 'R

in R, (c) or out R, (c)

In this connection the term ‘address' is being used
rather loosely and has no connection with any of the
addresses in memory.

However, access to the Memory Disc is gained through
the other method of using poris, and we will be
concerned only with the ‘out® version. In this the
required byte is put into A and the port number is
specified as part of the instruction code. To output
the content of A through any one of the ports the
eneralised mnemonic and the generalised decimal
struction bytes are;

out (P),a 211 P where 'P' 1s port Ne€.

‘A' is the only register available for use with this
instruction

The Memory Manager

The 'Memory Manager' 1is located at address FD21h
(33,253) in" common memory. This is the sub-r that
lines up the set of memory blocks that are required
to be available to the Z80 at any particular moment.
Usually this is Bank 1 (the TPA), but it may be an
of the others. The Manager 1s entered with

containing the Bank N2 required and this it stores at
address AOh. It then loads A with each of three
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values prior to making three ‘out' instructions to

ort N2s FOh, Flh, and F2h (le. ports 240, 241 and
42). The values put into A and then sent to these
orts determine which memory blocks are switched
4 E? circuit. The basis of the Memory Manager is as
ollows :

Start
push hl 229 Save HL

1ld (FEAOh), a 50 10 254 Store A

dec a 61 If (a)=1
FD26 jr z 30 40 30 Jump to FD46.
Banks 0, 2 and N

inc a 60 Else restore (a),

1d hl 8381h 33 129 131 load HL,

Jjr z 9 40 9 If (a)=0 jp to FD37

1d 1 88h 46 136

cp 2 254 2 If Bank = 2 then

Jr z 3 40 3 Jump to FD37.

add 86h 198 134 If Bank > 2 then
FD36 1d 1 a 111 (1) = 134 + (a).
FD37 1d a 80h 62 128 Set

out (FOh),a 211 240 the

ld (0061h)hl 34 97 0 values in 'a’

ld a l 125 and

out (Flh), a 211 241 1ve

ld a h 124 he ‘'out’

out (F2h),a 211 242 Instructions.

pgp hi 225 Recover orig (hl)
FD45 ret 201 and finish.

n (TPA)

4 685h 33 133 134

ld (0061h) hl 34 87 © As

ld a 1 125 above.

out (Fl1),a 211 241

ld a h 124

out (F2),a 211 242

ld a 84h 62 132

out (F0),a 211 240

ggp hl 22h Recover orig (hl)
FD ret 201 and finish.

The ‘push' and ‘pop' instructions are fairly common
features of the sub-routines within CP/M " and are
included so that data held in HL 1s preserved for
later use if required, but they are not essential to
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the bank—switchini operation. If you follow through
the pattern of the sub-r you will see that the
values in A used for the ‘out' instructions are
unequivocal in the cases of calling for Banks O, 1
and 2. The b%tes fed to the ports in order to
switch-in these banks are in fact;

FO FL Fe

Bank O 128 129 131
Bank 1 132 133 134
Bank 2 128 136 131

For banks of higher number the value sent to F1 1is
equal to [134+(a)] sc the sequence continues as;

Bank 3 128 137 131
Bank 4 128 138 131
Bank 5 128 139 131 . . etc.

Accessing the Memory Disc

There is a BIOS (not a BDOS) function N2 27, called
'SELMEM’', which accesses the Memory Disc by adding 78
to ‘w.boot' to produce the address FC51h ie (81,252),
at which is found the instruction ‘jp FD21h', ie. ‘jump
to the Memory Manager'. Before using it 'a' is loaded
with the required Bank N2. SELMEM is the normal
system—entry to the Memory Disc, but it 1is more
convenient for an m/c user to call the Memory
Manager direct.

Hence, to switch-in a Bank, put its number into A and
then use ‘call 33 253°'. If the bank number is larger
than 2 you will be accessing part of the Memorg Disc.
Bank 3 will switch-in Blocks 9,10,11, and 7; ank 4
will give Blocks 12,13,14, and 7, etc. (see %age 82).
When you have finished with the Memory Disc you
should return to Bank 1.

The reason for my development of the empirical Block-
Switching approach 1s that difficulties arise with
the above technique if you attempt to cross a block
boundary when addressing a sequence of addresses in
a new Bank; as may happen with an 'ldir' operation.

END
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SJUMP BILOCKS

A ‘'jump block' or 'jump table' is a data table filled
with 'jump' instructions. Imagine, for example, that
the first three routines or sub-routines of your
program start at addresses,

(100,1) (150,3)> and (200,6)
then the contents of your jump table would look
something like:

first 195 100 1
second 195 150 3
third 195 200 6
etc . . 195 L1 H1

195 L2 H2
up to 185 Ln Hn

An{ Jumg to, or call of, your first routine will then
not be to the routine itself but to the first address
of the table from where action will be re-routed to
the routine. Jumps to, or calls of, the second
routine will be to the 4th byte of the table, those
goblthe %hird routine will be to the 7th byte of the
able, etc.

This arrangement has the advantage that during the
developmen of a program, when the inevitable
sequence of alterations leads to repeated changes in
the start address of a part of the program, it is
necessary only to change the address in the jum
block, not each individual reference to the par
throughout the program. The system alsoc makes it
easier for the different elements of a package to
work together in spite of block-switching.

The only disadvantages are that 1t adds fractionally
to the process time, and that it takes up memory
equivalent to three bytes for every routine referred
to. The time factor is trivial in almost all cases,
and the PCWs have enough memory for it to be hardly
a major consideration.

If you allocate additional bytes per jum?, then it is
gossible to perform other standard actions in the
able as well as the jumps; you may wish to set or
reset a flag each time the ‘table is employed, for
example. _—
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DISC EDITING

Dump

Side 3 of the Amstrad utilities discs contains the
file °‘'DUMP.COM' which can be used to display the
contents of files. Establish the CP/M prompt with
‘DUMP.COM* on the disc in the current drive, and
enter an instruction such as ‘dump a:fred.dat’,
assuming that the file to be examined is in the A:
drive and is called ‘FRED.DAT'.

This will display two versions of the file contents.
The bulk of the screen will be occupied by hex values
of all the bytes in the file, arranged in rows of 16
with a byte count, also in hex, down the left side.
To the right, in a smaller area, will be the same
data interpreted as if it were all ASCII codes, le.
not knowing whether it 1s looking at strings or
numerical data, 'DUMP' will do its best to present the
information in both forms. You can therefore use
this facility to detect errors in the file, though it
is naturally easiler to spot string errors than
numerical ones.

The Knife

'‘Hisoft' have refined this utility in a low priced
ackage called 'The Knife', which duplicates ‘DUMP*
ut also allows searches of the disc for numerical
and ASCII sequences, the location of which Iis
displayed on the screen when found. In addition, and
more significantly, it allows you to change any bytes
you like. When making the changes you can toggle
(alternate) between changes to the data (in which you
input hex numbers) or to the ASCII version (in which
¥ou press the alphanumeric keys). The package 1s
herefore not just a passive inspection tool; it
gives you at least some ability to edit the disc
content, though naturally this falls short of a full
edit facility of the word processor tyfe. Other
features, such as 'UN-ERASE', are also provided.

Accompanying the package is an informative booklet
that contains a wealth of detail on the structure of
Amstrad files, and if you are interested in nitty-
§ritty file fiddling then the booklet will justify a
air slice of the price. ‘Hisoft' can be contacted at
léﬁ[i)ghton Buzzard (0525) 718181.
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PARSE FILE NANME

It 1s possible to cut out a lot of Frogramming when
setting up an FCB by usin§> fnc No 152. First point
DE at a 4-byte control block - the "PFCB" (don't
blame meb. he first two bytes of the PFCB contain
the address of a string that names the file.

This string has four optional parts, but (need I add)
at least one option must be used (that's what the
instructions say!. The first option 1s the drive
name which can be A: B: etc. If you don't specify
the drive, the default drive is used. The second
option is the file name (up to 8 ASCIIs). The third
option 1s the file-type, which must consist of ".*
followed by up to 3 ASCIIs. The fourth option may be
a (Password consisting of ";" followed by up to 8
ASCIIs. The whole siring must end with one of 16
ossible terminators viz: Space(32) Tab(9) Return(13)
ull ;=< 2> . ¢, 1013 $ and Verticalbar. This
allows you to have several strings end to end in
memory and use each one as appropriate.

The third and fourth byte of the PFCB are the
address at which you want the FCB to be constructed.
When fnc 152 has worked its magic the FCB will be
drawn up at that address and zeroised ready for use
in ‘'Open' etc. The password, incidentally, will be
%x%ser ed in bytes 16 to 23, and its length at byte

If your string had the terminator 0 or 13, zero will
be returned iIn HL. For the other terminators, the
terminator address will be returned in HL (which
therefore tells you where to find the next string).
FFFFh will be returned in HL if you use a duff
filespec. _—



168
BOOKS

An Introduction to Z80 Machine Code

Authors: R. A. & J. W. Penfold
Published: Beanax:jd Berbani Ltd, Shepherds Bush Road,
ondon.

As a dictionary of the mnemonics, this book 1s
extremely good value. It is low priced and gives a
description of the full Z80 instruction set, together
with the T-states required by each and their etfects
on the flags. All opcodes are in Hex.

CP/M 80 Programmer's Guide
Authors: B. Morrell & P. White

Published: Macmillan Education Ltd, Basingstoke,
Hants, RG21 2XS.

An excellent description of the more commonly used
BDOS functions with emphasis on those a%lyin§ to
file-handling. Clear and informative. briefly
describes the use of Assemblers.

The Amstrad CP/M Plus

Authors: D. Powgs—Lybbe & A. Clarke
Published: M.M.L. Systems Ltd., 11, Sun Street,
London, EC2M 2PS

This is a large, comprehensive, Amstrad-specific book
§ivin a description of the implementation of CP/M on
he 'CPC' and 'PCW' models and written by the experts.
If you want to know anything about Amstrad CP/M then
it "will almost certainly be in here. There 1is a
tutorial section that is readable enough and says
something about programming with Assemblers, but it
is closer to being a text-book than a user-guide, so
dipping in for snippets of information is not easy.
Most of the book 1is data tables that are useful in
m/c programming but the presentation style 1is
‘professional’, so unless you know most of it already
and merely want guidance on detail you will be
struggling. END
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INDEX
A
Accumulator 17
adc 25,152
add 25,152
Addition
BCD_ 146
- _mnemonics 25
Address 13
-calc of bytes 4
Addressing modes 38
Advice 58
Algorithm 50
Alphabet 11
Alternate registers 48
and 27,152
and a 26
Arithmetic
binary_ 6
_routines 131+
‘_opcodes 152
ASCII codes 11,60
Assembler 33
using_ 49
Assembly language 20
Awalt key 61
B
Back-up files 117
Base-4,8,10, 16 11
Bank 81,162
BASIC insertn prog , 41
BCD 36, 146
_addn & subn 147
BDOS 55,60+,73
_list of functs 158
Binary 6
_mult & divn 10

BIOS 55, 164

PCW Machine Code

bit 37,154
Bit 537
_comparisons 27
_humbers 8
sign_ 9
_values 9
Block
character control_ 68
-comparisons 33
nemory_ 81
—printing 68
—zeroising 32
Books 168
Byte 5
C
Calcdig 143
Calculate addrs 14
call 31,153
Carry flag 18,36
_instructions 36
CCB 68,73
ccf 36,153
Character
_matrix RAM 84
_set ; 60
special_ 75,78
Clear screen 67,96
Code
ASCII_ 11,60
control_ 66
op_ 48, 160+
pure_ 40
Coin tossing 145
Comparisons
bitwise_ 27
block_ 33
number_ 26
Compiling 40,48
Complement 37
Conditions 28,30,31
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Console 61
_buffer 64
~input 61
_1/0 64
Control codes 66
Corrupt 33,62
cos 138
Counting 6
Counts 8 & 16 bit 30
cp 26,152
cpd, cpi 33, 152
;- cpdr, cpir 33,152
cpl 37,152
CP/M 54,55
D
daa 36,152
DATA lines 42
dec 19,30, 152
Decimal
_adj accumtr 36
_codes 41
_opcodes 150+
Decrement 19,30
Decimal/Denary 6
Default 108
DEFB DEFM DEFS DEFW 48
Defined byte etc 48
Delete file 109,112,114
Delimiter 66,67
Denary 6
Dice ’ 146
Disc _editing 166
_error mode 128
_free space 122
_handling 107+
Memory_ 100+
Division
binary_ 11

8- 16- 32-bit_ 132,136

171

djnz 29, 44,153
DMA address 110,114,120
Double density UDG 77
Doubling 25,34,35
Draft quality 75
Drawing
screen_ 97
Drive number 107,123
E
Editing discs 166
Error 58
_handling 124+
_hmessages 125
_mode 128
Escape sequences 66
ex 36,153
Exchanges 36
Exclusive or 27
Executive routine 51
F
FCB 107,123,167
File
backup_ 117
COM_ 119
-kinds/types 111
large_ 114
_hame 108
random_ 116
sequential _ 112
_type 108,111
Flags 17,45
carry_ 18,25,36,45
half carry_ 147
zero_ 18,45
Floating point 10,139
Flow diagram 50

fre 55,58
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Free
_disc space 122
_memory 55,58
Function number
BDOS_ 55,60
list of _ 158
G
Games 142,145
GOSUB 31
GOTO 28
Graphics
printer_ 75
screen_ 80+
H
Half-carry flag 147
Halving 34
Hexadecimal 11
Hex - 11
High byte 7
High quality print 75
HIMEM 55
I
inc 18,30, 152
Increment 19,30
In-line parameter 84
Insertion program » 41
Instruction set 22
Interrupts 48,96

Italics 75

PCW Machine Code

FJ
Jargon 3
jp 29,153
Jr 28,153
Jump_absolute 29
_block 52,165
_distances 29,45
—opcodes 153
_relative 28
K
Keyboard 61
Changing_ 128
_input 61,63
Keying errors 127
L
ld 22,150
ldd 1di 33,153
lddr 1dir 32,153
least signif bit 6,34
Letters 11
Library sub-rs 51
-symbols 77
Lines screen 87
List 72
BDOS fncts_ 158
_output 78
opcodes_ 150
Logical operations 27
Loop 29
Low byte 7
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M

Machine code

Masking

Matrix RAM

Memory
available_
_bank/block
common_
_disc
_manager

_organisation

PCW_
screen_
MENU program

Message _printing

error_
Mini program

16
27,104
82
5,13
55,58
81

81

82,100+

100, 162
52
54
85
120
69
125
43

Miscellaneous opcodes 153

Mnemonic

Most signif bit

Multiple choice

Multiplication
binary_
8/16/732 bit_

N

neg

Negative nos

Nested

Nibble

No operation

nop

Notation

Numacc

Number
bit_
_comparisons
_printing
random_

21,48
6
46

10
132,134

26
62,142
144,145

173
O
Ones complement 37
Opcode 48
_decimal lists 150+
misc_ 153
or 27,152
or a 26,27
Overflow 8,157
Overwrite 46,58
P
Page 53
Paper feed 74
Parse File Name 167
pc 20,161
PCW memory 54
Pixel 84
_delete 98
pop push 33,153, 160
Port 162
Print
_instructions 60+, 72+
_numbers 62,142
_position 66+,70,71
_single chars 61,64,78
_string 66,68
_style 74
Printer 72+
_buffer 73
_graphics 75,77
Processor - 5
Program
_counter 20, 160
_speed 56, 156
Programming 40+,50+
Prompt
printing_ 73
A>_ 126
Pure code 40
push 33,153,160
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R

RAM
char matrix_
roller_
Random
_access files
_numbers
Read sequential
Record 128-byte
Recursive
Red biro
Registers
alternate_
Relocatable
Rename
Reset
-carry flag
res
ret
Return
Roller RAM
Rotate
-digit
_opcodes
Routine
executive_
rl rlc rr rrc

=

sbe
Scrolling
Set
set
Shift
Sign
_bit
_flags
SIN
sp
Speed
Square roots

84
84
89

116
144,145
113
110

31

14

16

48

29

117
5,154
26,27
37,154
31,126
31,61
89

35

36

143
16,51
51
35,151

25,152
89,98
5
37,154
34

9,157

140

138
19,31,160
156

141
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srl 34,151
Stack 19,31,33,160
Stack pointer 19, 160
Status line 87,98
String 11,52,54,66
_delimiter 11,66,67
_printing 66
_end marker 66,67
sub 25,152
Subtractions 25,134
BCD_ 148
Sub-routine 16,50
Switching banks 162
T
T-states 56, 156
Text
_control 73
_files 111
_from keyboard 64
Testing 57,58,121,128
Timings 158
TPA 55,80, 102+
U
DG 75
Underline 74
Userfn 83
v
Variables 52,53,121
Version number 61
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w
W-language
Warmboot
Wild cards
Write

_random
_sequential

Xxor

=

Z 80

Zero flag
Zeroes
Zeroise block

126
110

116
112

27,152

5,19,58
18,37
32,37

32
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New book for AMSTRAD computers:

“PCW Machine Code”

by Mike Keys

What the readers think...

I'm very impressed with the book; I wish I'd had this kind of tutor I.S. Bucks
when I started two years ago. :

It is exactly the kind of book I was hoping for. 1 like its friendly R.C. Oxon
pragmatic tone, and being able to understand the jokes gives a
beginner a feeling of confidence !

Thanks for the book. I've read it already and learned a lot. Machine D.E. Clwyd
code has always frightened me until now. Good luck with it.

My main reason for buying your book was to find out what went on  A.H. Huddersfield
inside the PCW, and I find it very useful in this respect. Please keep
me informed of any future publications of yours.

I found the book easy to read and to follow. It has provided me with a AW. Sale
series of examples routines which are easy to understand and to

modify (and they all work which is a great confidence booster).

Thanks again.

I am very pleased and impréssed with the contents of your book and J.W. Belfast
how easy to read it is. I wish you every success and hope you will
keep me informed of future developments.

I was looking for a brief but fairly comprehensive explanation of R.W. Melrose
machine code and your book seems to meet my requirements very

well.

Thank you for sending me your wonderful book. I couldn’t stop T.P. W Germany
reading it. If you write a sequel, take this letter as my order for it.

I find your approach so valuable in “PCW Machine Code” that I do J.L. Denmark
not hesitate to write.

Many thanks for your helpful service and the excellent book. E.B. Spain
Exactly what I was hoping for - a very good book. K.S. Manchester

We received these unsolicited comments from readers of “PCW Machine Code”.
The originals are available for inspection.



“PCW
Machine
Code”

The best book on
programming
the PCW.

How to control the screen, the printer, discs and the whole of the
machine memory.

A full explanation of machine code with dozens of program
examples.

With a special section on calculations such as Sin, Cos, Sq roots,
Random Nos, 8-, 16-, and 32- bit arithmetic, etc., etc.

Full index and appendices.

©

"GOOD VALUE!" Amstrad PCW Magazine, Mar '8
"I RECOMMEND IT!” Rex Last, Jan '89

"EXACTLY WHAT PCW OWNERS NEED!" Personal Computer World Feb ‘89

£13.95 nett

ISBN 1 871892 00 7
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