INTR
1
ODUCING

ASSEMBI / M D
% l'ANG '
7 rSe us
Qﬂ»’%ﬁ@?&r@a‘n

Q 4»55»'%&& 2
4%%};\%‘&\\
\\A\A‘ﬁ{%' v
AN w»;nvaasm»&
N ‘ﬁiﬂﬂaﬂm;’»
gé“"ﬁ%mlﬁ
S oy

S

Introducing Amstrad CP/M
Assembly Language

Other books for Amstrad users

Introducing Amstrad Machine Code
Ian Sinclair
0 00 383079 9

Advanced Amstrad CPC6128 Computing
Ian Sinclair
0 00 383300 3

Amstrad Word Processing — on the PCW 8256
Ian Sinclair
0 00 383328 3

Introducing C
Boris Allan
0 00 383105 1

Using Amstrad CP/M Business Software

Ian Sinclair
000 3833593

Introducing
Amstrad CP/M
Assembly
Language

lan Sinclair

8 Grafton

COLLINS
Street, London W1

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London WI1X 3LA

First published in Great Britain by
Collins Professional and Technical Books 198€
Reprinted 1986

Copyright © lan Sinclair 1986

British Library Cataloguing in Publication Data
Sinclair, lan R.

Introducing Amstrad CP/M assembly language.
1. CP/M (Computer operating system)

2. Microcomputers

1. Title

005.4'46 QA76.6

ISBN 0-00-383309-7

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or transmitted,

in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

The cover illustration was taken from Analysis, Design and Construction of
Braced Domes, courtesy of the Editor, Professor Z.S. Makowski.

Other books for Amstrad users

Introducing Amstrad Machine Code

Ian Sinclair
0 00 383079 9

Advanced Amstrad CPC6128 Computing
Ian Sinclair
0 00 383300 3

Amstrad Word Processing - on the PCW 8256
lan Sinclair
0 00 383328 3

Using Amstrad CP/M Business Software

Ian Sinclair
000 383359 3

Contents

Preface

1

O 00 NN A WL B W N

ROM, RAM, Bytes and Bits

Digging Inside the CPC6128 and PCW 8256
The Miracle Microprocessor

Register Actions

Taking a Bigger Byte

CP/M Interactions

More Routines

SID, ED and Family

Disc Use and Utility Programs

Appendix A: Languages Under CP/M
Appendix B: Addressing Methods of the 8080

Appendix C: 8080 Instructions
Appendix D: The ED Commands
Appendix E: The ASCII Codes in Hex
Appendix F: Effect on Flags
Appendix G: Calls to 000SH

Index

vil

16
26
39
54
66
85
101
114
132
133
134
137
139
141
142
143

Preface

The user of an Amstrad CPC6128 or PCW 8256 who has used programs
running under CP/M is often, very reasonably, inclined to treat CP/M as
one big mystery. After all, the original CP/M system, in 1972, was designed
for professional programmers in order to allow them to write programs
which would run on a wide range of the microcomputers which were then
becoming available. At one time, it appeared that CP/M for 8-bit
microprocessors might die out, but the appearance of CP/M, particularly
the new CP/M 3.0, on the Amstrad, Einstein and Commodore machines
has changed all this. There is now a new generation of CP/M users, and
among them must be many who would like to know more about CP/M,
how it works, and how CP/M programs are arranged.

The first obvious step in this process is to learn and master the language
that is used by the 8080 microprocessor which is the language of CP/M.
This is not so easy as it sounds. The 8080 microprocessor, has not been used
in computers for many years, and its programming language is not one that
is dealt with by many modern books. The reason is that the 8080 was
superseded by another chip, the Z80, which is the heart of the CPC6128
machine. The Z80 is, however, completely compatible with the 8080, using
the same set of number codes, with several enhancements. Any program
that is written for the 8080 will run on the Z80, but a program written for the
780 may not run on the 8080. If you write programs in 8080 language, then,
they will run on a machine which uses CP/M on the Z80, or on another chip,
the 8085.

This still leaves the snag of learning the 8080 language. Many books seem
to be written with the assumption that the reader already knows all the terms
that are used, and a lot about the way the microprocessor chip itself works.
Other books seem, to the beginner, to be written in a foreign language, with
no subtitles. Others make a promising start - then lose the inexpert reader by
a sudden jump to much more difficult material without explanations, or to
material like arithmetic routines which is of little use to most readers. In
addition, most books that deal with CP/M were written around the very
early versions, rather than around the new issue that Amstrad owners enjoy.
Even the CP/M 2.2 of the CPC464 disc system is an older version, though
much in this book will be applicable to it.

This book is intended for the real novice to CP/M machine code - the
owner who uses his or her Amstrad CPC6128 or PCW 8256 for programs
running under CP/M, can program in BASIC, but has absolutely no idea of
what goes on inside the box. This book is not intended to make you, the
reader, into an expert in programming in CP/M, because only a lot of

viii Introducing Amstrad CP/M Assembly Language

experience, a lot of reading, and a keen desire to solve problems can do that.
It does not even set out te introduce you to everything that can be done with
CP/M, because very few people can ever hope to do that. What I hope it will
do is introduce you to the start of a big topic, and put you in a position to
understand some of the whys and hows of CP/M programming on the
CPC6128. You'll find a huge new world of computing opening up before
your eyes, you'll have a much better understanding of how the CP/M
system works, and you’ll be able to understand and enjoy the hints and
programs ihat you'll find in the magazines, particularly in the CP/M User
Group magazine. In particular, you’ll have a clearer understanding of how
to modify CP/M programs to your own needs, something that continually
turns up when the system is adapted to yet another computer.

Let me make one point clear, though. This type of programming is never
easy. It may become familiar, it may even become routine, but easy - not
really. Learning it is also a task which requires some work, a lot of effort to
understand what is going on, and a little time spent in trying things out on
your own computer. To help you, the system itself has several very useful
programs, named ED, ASM, SID, and HEXCOM, but the main effort, |
repeat, must come from you, the reader. It’s an effort which you will find
well worth making.

As always, a book like this is the result of the efforts of a large number of
people. | particularly want to thank Digital Research, who have published
sufficient details of the structure of CP/M to make life considerably easier
for machine code programmers. | must also acknowledge the enormous
help that any CP/M programmer gets from the CP/M User Group, among
whom Andrew Clarke is a constant fount of wisdom. At Collins
Professional and Technical Books, I am most grateful to Richard Miles,
Janet Murphy and Sue Moore for turning my manuscript into a real book.
This is a miracle that they perform time and time again, but which never
ceases to amaze me. | am also most grateful to the fastest typesetters in the
business, and to the printers, for the appearance of this book in such a short
time after the sheets emerged from the daisywheel printer.

Ian Sinclair

Note: PCW 8256

The version of CP/M supplied with the Amstrad PCW 8256 is the same
as that on the CPC6128. The keys of the PCW 8256 are differently
marked. however. The CTRL key is marked ALT and the ESC key is
marked EXIT. For details about the use of other keys, see the item in
the PCW 8256 manual concerning the SETKEYS file, page 108.

Chapter One
ROM, RAM, Bytes and

Bits

When vou plug a TV receiver into a wall socket and switch it on, you’re using
electricity and receiving a TV signal. You don’t see the machinery that
generates the electricity, you don’t see the TV camera that generates the TV
signal, and you don’t see the transmitter that sends out the signal. You can
spend your life enjoying TV without ever having to worry about how the
electricity and the TV signal got there, or what happens inside the TV
receiver. You can also enjoy using your CPC6128 and PCW 8256 for
running programs under CP/M without ever worrying about how these
instructions are carried out. There is a difference, though. You can use
CP/M on your PCW 8256 or CPC6128 computer much more effectively,
modify programs to suit you better, or write routines to carry out operations
that are not provided for in standard CP/M, if you have some
understanding of what goes on inside. The most important part of that
understanding is the language in which the computer is programmed when
you buy it - called machine code.

One of the things that discourages computer users from attempts to go
beyond just making use of CP/M is the number of new words that spring up.
You can’t do without these new words, because they are needed to describe
things that are new to you. The writers of many books on computing,
especially on machine code computing, seem to assume that the reader has
an electronics background and will already know the terms. I shall assume
that you have no such background. All I shall assume is that you possess a
CPC6128 or PCW 8256, and that you have some experience of
programming it in BASIC. Some experience of programming in BASIC is
essential, because if you lack that, then you will have a much harder task
understanding machine code. This means that we start at the correct place,
which is the beginning. I don’t want to have to interrupt important
explanations with technical or mathematical details, so these will be found
in the Appendices. That way, you can read the full explanation of some
points if you feel inclined, or skip them if you are not.

To start with, we have to think about memory. A unit of memory for a
computer is, as far as we are concerned, just an electrical circuit that acts like
a switch. You walk into a room, switch on a light, and you never think it’s
remarkable that the light stays on until you switch it off. You don’t go

2 Introducing Amstrad CP/M Assembly Language

around telling your friends that the light circuit contains a memory - and yet
each memory unit of a computer is just a kind of miniature switch that can
be turned on or off. What makes it a memory is that it will stay the way it has
been turned, on or off, until it is changed. One unit of computer memory like
this is called a bir - the name is short for binary digiz, meaning a unit that can
be switched one of two possible ways. The memory of a computer consists of
a very large number of incredibly small switches, each of which can be either
on or off. There’s no other possibility, no half-way position.

We'll stick with the idea of a switch, because it’s very useful for explaining
how we use memory. Suppose we want to signal with electrical circuits and
switches. We could use a circuit like the one in Figure 1.1. When the switch is
on, the light is on, and we might take this as meaning ‘yes’. When the switch
is turned off, the light goes out, and we might take this as meaning‘no’. You
could attach any two meanings you like to these two conditions (called
‘states’) of the light, so long as there are only two. Things improve if you can
use two switches and two lights, as in Figure 1.2. Now four different
combinations are possible: (a) both off, (b) A off, B on, (c) A on, B off, (d)
both on. This set of four possibilities means that we could signal four

P e 18
* 4—cable—p
current
switch light return
(transmitter) (receiver) (earth)
Figure 1.1 A singie-line switch and bulb signalling system.
A A
—as -
+ —e
B B
= 2= T
<\
A B
off | off
off | on
on | off
on | on

Figure 1.2 Two-line signalling - four possible signals can be sent.

ROM, RAM, Bytes and Bits 3

different meanings. Using one line allows two possible codes, using two lines
allows four codes. If you feel inclined to work them all out, you’ll find that
using three lines will allow eight different codes. A moment’s thought
suggests that since four is 2X2, and eight is 2X2X2, then four lines might
allow 2X2X2X2, which is sixteen, codes. Since we usually write
2X2X2X2 as 24 (two to the power four), we can find out how many codes
could be transmitted by any number of lines. We would expect eight lines,
for example, to be able to carry 28 codes, which is 256. A set of eight
switches, then, could be arranged to convey 256 different meanings. It’s up
to us to decide how we might want to use these signals. The set of eight is a
particularly important one, because the memory of your CPC6128 and
PCW 8256 is arranged in groups of eight bits.

One particularly useful way of using these on/ off signals is called binary
code. Binary code is a way of writing numbers using only two digits, 0 and 1.
We can think of 0 as meaning ‘switch off and | as meaning ‘switch on’, so
that 256 different numbers could be signalled using eight switches by
thinking of 0 as meaning off and | as meaning on. This group of eight is
called a byte, and it’s the quantity that we use to specify the memory size of
our computers. This is why the numbers 8 and 256 occur so much in machine
code computing.

The way that the individual bits in a byte are arranged to indicate a
number is the same as we use to indicate a number normally. When you
write a number such as 256, the 6 means six units, the 5 is written to the
immediate left of the 6 and means five tens, and the 2 is written one more
place to the left and means two hundreds. These positions indicate the
importance or significance of a digit, as Figure 1.3 shows. The 6 in 256 is
called the ‘least significant digit’, and the 2 is the ‘most significant digit’.
Change the 6 to 7 or 5, and the change is just one part in 256. Change the 2 to
1 or 3 and the change is one hundred parts in 256, which is much more
important.

Having looked at bits and bytes, it’s time to go back to the idea of memory
as a set of switches. As it happens, we need two types of memory in a
computer. One type must be permanent, like mechanical switches or fixed

2 5 3 a denary (decimal) number
most significant least significant
digit digit
I ¢ l a binary number

Figure 1.3 The significance of digits. Our numbering system uses the position
of a digit in a number to indicate its significance or importance.

4 Introducing Amstrad CP/M Assembly Language

connections, because this type has to retain the number-coded instructions
that operate the computer. This type of memory is called ROM, meaning
read-only memory. This implies that you can find out and copy what is in
the memory, but you cannot delete it or change it. The ROM is the most
important part of your computer, because it contains all the instructions
that make the computer carry out the actions of BASIC, and a few parts of
CP/M. These instructions are referred to as the ‘firmware’ of the computer.

When you write a program in BASIC for yourself, the computer stores it
in the form of another set of number coded instructions in a part of memory
that can be used over and over again. This is a different type of memory that
can be ‘written’ as well as ‘read’, and if we were logical about it we would
refer to it as RWM, meaning read-write memory. It’s this read-write
memory that is used mainly by CP/M programs, and the CP/M operating
system itself. Unfortunately, we’re not very logical, and we call it RAM
(meaning random-access memory). This was a name that was used in the
very early days of computing to distinguish this type of memory from one
which operated in a different way. We're stuck with the name RAM now
and probably forever!

The big difference between RAM and ROM is that each bit of RAM
behaves like a switch only while there is an electrical supply to it. When you
switch off the supply, the switch action stops. If you turn on the supply
again, the switch action of the RAM will start again - but the program will
not appear as it was before. Each bit of RAM may be ‘on’ or ‘off’ when
power is restored, but this happens at random. When you switch off your
computer, then, you lose everything that was stored in the RAM, and when
you switch on again all you get is a set of random signals. It’s like throwing a
jigsaw puzzle into the air - you can’t really expect it to land still assembled.
This is also why the programs in CP/M which occupy this part of memory
are called ‘transient’ - they will always vanish when you switch off, and they
will be replaced when you load in a new program.

The number code caper

Now we can get back to the bytes. We saw earlier that a byte is a group of
eight bits which can be arranged in any of 256 different ways, depending on
which bits are Is and which are 0s. The most useful way of arranging bits,
however, is one that we call hinary code.

Binary code uses the position of a digit to indicate its value. The right-
hand digit can be 0 or 1, and it means just these numbers. The next digit to
the left, however, can also be | or 0. The 0 means 0, but a | in this position
means 2. In the next place to the left, a | means 4, and so on. The whole
system is illustrated in Figure 1.4. Each different arrangement of eight bits is
used to represent a number which we would write in ordinary form as 0 to
255 (not 1 to 256, because we need a code for zero). Each byte of the 65536

ROM, RAM, Bytes and Bits 5

191
_ / this position is
this position for units

is for 4s

this position
is for 2s

The number 1§1 is 4+1 = § in denary

The position values are:
{128]64 [32]16]8(4[2] 1]

- in a byte

Example:

p1pp1191

means 64 + 8 +4+ 1 =77

Figure 1.4 How digit positions are used in binary numbers.

bytes of RAM in the CPC6128 computer can store a number which is in this
range 0 to 255.

Numbers by themselves are not much use, and we wouldn’t find a
computer particularly useful if it could deal only with numbers beween 0
and 255, so we make use of these numbers as codes. Each number code can,
in fact, be used to mean several different things. If you have worked with
ASCII codes in BASIC, you will know that each letter of the alphabet and
each of the digits 0 to 9, and each punctuation mark, is coded in ASCII as a
number between 32 (the space) and 127 (the left-arrow). That selection
leaves you with a large number of ASCII code numbers which can be used
for other purposes, such as graphics characters. The ASCII code is the one
we use for programming words into CP/M, and anything that consists
purely of characters in ASCII code is called a rextfile. All of the program
sections that we’ll write for CP/M will start out as a textfile, and will be
recorded on the disc in that form. This is not the same as the form which is
used for storing BASIC programs under AMSDOS, however. When you
switch out of CP/M into BASIC, the CPC6128 computer uses its own
coded meanings for BASIC words in this range of 0 to 255. For example,

6 /Introducing Amstrad CP/M Assembly Language

when you type the word PRINT in a BASIC program line, what is placed in
the memory of the CPC6128 computer (when you press RETURN) is not
the sequence of ASCII codes for PRINT. This would be 80,82,73,78,84, one
byte for each letter. What is put into memory, in fact, is one byte only - the
binary form of the number 191, meaning ‘print’. Memory is a precious
commodity in small computers, and using a single byte in this way is an
obvious saving of memory. Since this applies only to BASIC, that’s the end
of it as far as we’re concerned, because you can’t write programs in Amstrad
BASIC when you are using CP/M. That’s not quite true, because you can
buy a version of BASIC which will run under CP/M, but there isn’t much
point in doing this unless it is the type of BASIC that is called ‘compiled’.
There will be more about this in Appendix A.

Back to CP/M, then. CP/M programs are instructions which are written
in the form of number codes. These instructions will cause actions to be
carried out, and the numbers that make up these codes are what we call
machine code. They control directly what the ‘machine’ does. That direct
control is important, and it’s one reason for using CP/M. A program
written in CP/M takes direct control over the microprocessor which is the
heart of the computer, and will be able to run very fast, much faster than a
program in Amstrad BASIC.

Do-it-yourself spot

As an aid to digesting all that information, try a short bit of self-help. Place
the CP/M System disc copy, side | uppermost, in the drive, and type:

TYPE LANGUAGE.COM

Y ou can use either lower-case or upper-case for this, as you probably know,
but commands will be printed in upper-case in this book to make it clear that
they are commands. The effect of the TYPE command, as you know, is to
place on the screen the characters in any file. When you press RETURN on
this effort, you’ll see some intelligible characters appear, such as a title, a
copyright notice and a few error messages, but the rest looks like gibberish.
In addition, the loudspeaker hoots at you briefly. This is because only a
small part of the file consists of ASCII codes, and these have been printed as
the messages that you see. The rest consists of machine code characters, the
codes that are the instructions to the microprocessor when it carries out this
program.
Now try another tactic. Turn the disc over to side 2, and type:

DUMP B:LANGUAGE.COM (RETURN)

The disk spins, and you will get a message scrolling sideways at the foot of
the screen inviting you to insert side B. This you do by turning the disc over,
and then pressing any key. The screen display then shows something quite

ROM, RAM, Bytes and Bits 7

different. ‘Dump’ means ‘find what bytes are stored in the file’, and this is
what the display shows. The four-digit numbers down the left-hand side of
the screen are reference numbers, a way of checking the position of the codes
of the file. The codes themselves are the two-digit numbers, arranged in lines
of 16. The numbers are written in a rather special way, called ‘hexadecimal’
(or hex), and that’s something we’ll need to come back to later. For the
moment, though, you’ll see that this is a way of discovering what is
contained in a CP/M file without causing a strange characters to appear, or
odd sounds. Numbers which correspond to ASCII codes are shown in
character form on the right-hand side of the screen.

Using SID

At this point, however, it’s more important to start getting used to a utility
called SID, the symbolic debugger. SID is a program of the type called
monitor, one which can tell what is going on in a program. The older version
in CP/M 2.2 is called DDT. Since SID is specifically written for CP/M 3.0,
it’s a vital asset to the understanding of our CP/M programs. SID is a large
and complicated program, and we’ll look at it in easy stages — some of its
facilities will not be needed in this book, and others may never be needed in
your applications. The important point about SID is that it can load in a
program and then investigate it. To show this in action, turn to side 2 of the
System discs. Now type:

SID B:LANGUAGE.COM and (RETURN)

This first loads SID, and then prompts you to put in side 1 of the disc in
order to load in LANGUAGE.COM.
When all the disc spinning is finished, you will see the message:

NEXT MSZE PC END
0500 0500 0100 DAFF

appear on the screen. These numbers are called address numbers. All of the
bytes of RAM memory within your CPC6128 computer are numbered from
zero upwards, one number for each byte. Because this is so much like the
numbering of houses in a road, we refer to these numbers as addresses. One
action of SID is to find what number, which must be between 0 and 255, is
stored at each address. SID automatically converts these numbers from the
binary form in which they are stored into the hexadecimal numbers that are
normally used for working with CP/M codes. What the message tells us is
that the next free address in the memory (NEXT) is 0500 hex, the location
following the largest file (MSZE) is also 0500, the microprocessor will start
its action (PC) at address 0100, and the end of the usable memory is at
DAFF. These numbers show the situation when the file (LANGUAGE.COM
in this example) is in memory by itself. As it happens, when you are using

8 Introducing Amstrad CP/M Assembly Language

SID, the addresses near the top of the memory are occupied by the SID
program, and they are quite definitely not free! Because of the way that SID
loads in and then shifts, the memory addresses just above 0500 appear to be
used, but the numbers that you see there are just left-overs. I know these
don’t look like numbers if you aren’t used to hex, but be patient and all will
be revealed.

The next thing to do is to try a SID action. SID indicates that it is ready
for a command by printing the hash sign (#) on the screen. Try the
command:

D0100 01FF then (RETURN)

This will produce a display that at first sight looks very much like the one
you obtained using DUMP. There is a difference, though. The numbers on
the side do not start from zero this time, but from 0100. This is because SID
reports the actual location of each byte in the memory, and these numbers
show where each byte of the file LANGUAGE.COM is located in the
memory of your CPC6128. Each of these bytes is stored in RAM memory,
and can be altered. To prove this, type S0102 following the # prompt. This
will bring up the address 0102, and the byte which is stored there, 4C. Now
type 53, and you will see this number printed alongside the other one, so that
the line looks like:

0102 4C 53

Now press RETURN, and you will see the next address number, 0103,
appear, with its byte 41. Type 49 this time, and press RETURN. When the
next address comes up, don’t type anything, just leave it. In the subsequent
addresses, type 43, 4C, leave, 49 and 52. The word ‘leave’ is a reminder not to
type anything in address 0107, just press RETURN. What you have done is
to replace some of the ASCII codes in a program by others. To see the effect,
escape from the memory-change routine by pressing ESC, then RETURN.
Now use D0100 01FF (RETURN) to display your work. This has made a
noticeable change to the title has it not? We could even record this altered
file back on disc - but that’s something for later. The important point is that
each program is stored in memory that can be altered. and SID offers one
way of carrying out that alteration.

Computer dissection

Now take a look at a diagram of the CPC6128 or PCW 8256 in Figure 1.5.
It’s quite a simple diagram because I've omitted all the detail, but it’s enough
to give you a clue about what’s going on inside. This is the type of diagram
that we call a ‘block diagram’, because each unit is drawn as a block with no
details about what is inside. Block diagrams are like large-scale maps which
show the main routes between towns but don’t show sideroads or town

ROM, RAM, Bytes and Bits 9

ROM
Tlecsens 1 Se;ial
U
= = ’) Keyboard
MPU Buses Port gTV
= = 3 Cassette
- = g Printer
Jllovsans " u
RAM Disk drive

Figure 1.5 A block diagram of any computer. The connections marked ‘Buses’
consist of a large number of connecting links which join all the units of the
system.

streets. A block diagram is enough to show us the main paths for electrical
signals in the computer.

The names of two of the blocks should be familiar already, ROM and
RAM, but the other two are not. The block that is marked MPU is a
particularly important one. M PU means microprocessor unit - some block
diagrams use the letters CPU (central processing unit). The MPU is the
main ‘doing’ unit in the system, and it is, in fact, one single unit. The MPU is
a plug-in chunk, a silicon chip encased in a slab of black plastic and provided
with 40 connecting pins arranged in two rows of 20. There are several
different types of MPU made by different manufacturers; the one in your
CPC6128 computer is called Z80 (or Z80A), and it will work with the codes
of the old 8080 microprocessor.

What does the MPU do? The answer is, practically everything, and yet the
actions that the MPU can carry out are remarkably few and simple. The
MPU can load a byte, meaning that a byte which is stored in the memory can
be copied into another store within the MPU. The MPU can also store a
byte, meaning that a copy of a byte that is stored within the MPU can be
placed in any address in the memory. These two actions (see Figure 1.6) are
the ones that the MPU spends most of its working life carrying out. By
combining them, we can copy a byte from any address in memory to any
other. You don’t think that’s very useful? That copying action is just what
goes on when you press the letter H on the keyboard and see the H appear on
the screen. The MPU treats the keyboard as one piece of memory and the
ccreen as another, and copies bytes from one to the other as you type. That’s
a considerable simplification, but it will do for now just to show how
important the action is. When you think of it, everything that you do when
you are typing a CP/M program name is a copying action. You typea letter

10 Introducing Amstrad CP/M Assembly Language

LOAD

ROM or RAM

STORE

ROM or RAM

Figure 1.6 Loading and storing. Loading means signalling to the MPU from the
memory, so that the digits of a byte are copied into the MPU. Storing is the
opposite process.

on the keyboard, and itappears on the screen because of this copyingaction.
It is also stored in the memory of the computer because of another copying
action. After you have typed the program name, it is fetched from the disc by
making use of another type of copying action. All of these actions make use
of loading and storing, and all are carried out by the MPU. Even when you
run a program, a large number of the actions are, once again, just copying
actions.

Loading and storing are two very important actions of the MPU, but
there are several others. One set of actions is the arithmetic set. For most
types of MPU, these consist of addition and subtraction only. Most of the
arithmetic operations can use only single-byte numbers. Since a single-byte
number means a number between 0 and 255, how does the computer
manage to carry out actions like multiplication of large numbers, division,
raising to powers, logarithms, sines, and all the rest? The answer is by
machine code routines that are part of the program. These routines already
exist in the ROM of the CPC6128, but the ROM routines are not used in
CP/M, so many CP/M programs need to carry their own arithmetic
routines with them.

There’s also the /ogic set. Logic means making decisions from given
information. In computer terms, this means comparing two numbers so as

ROM, RAM, Bytes and Bits 11

AND
The result of ANDing two bits will be 1 if both bits are 1, otherwise:
.LAND P =9
= D =
1 AND 1 l{ﬂANDIZJD}ﬂAN =29

For two bytes, corresponding bits are ANDed

19119111
AND gppp1ll]

PopPP111

only
these bits
exist in both
OR bytes.

The result of ORing two bits will be 1 if either or both bits is 1, # otherwise:

1 OR @
g OR 1

For two bytes, corresponding bits are ORed

19119111
OR ggpp11ll

19111111
t
only
bit which
is @ in
both.

}}g OR §= ¢

o

10R1=l{

XOR (Exclusive-OR)
Like OR, but result is zero if the bits are identical

1 XOR g =1
P XOR I =1

19119111
XOR pPggi1l1

19111999

lXORlZﬂ{ }ﬂXORﬂ=ﬂ

if two bits
are identical
the result
is zero.

Figure 1.7 The rules for the three important logic actions, AND, OR and XOR.

12 Introducing Amstrad CP/M Assembly Language

Binary number: a1191911
XOR with - 11011000 Key

19119011 Result

19119011
XOR with - 11911990 Key

pL1g1911 Original number again

Figure 1.8 If you XOR one number with another (the ‘key’), then the resultis a
number. if you XOR this number with the key again, you get the original
number back again!

to produce a third number. MPU logic is, like all MPU actions, simple and
subject to rigorous rules. Logic actions compare the individual bits of two
bytes and produce an ‘answer’ which depends on the values of the bits that
are compared and on the logic rule that is being followed. The three logic
rules are called AND, OR and XOR; Figure 1.7 shows how they are applied.
When the AND logic is in use, the ‘result’ of ANDing two bits is 1 only if
both bits are 1. If either bit is a 0, then the result is 0, and if both bits are zero,
the result is 0. The OR action gives a 0 only when both bits being compared
are 0. Only 0 OR 0 gives 0, because Ll OR0is1,and0OR lis 1.1 OR l isalso
1. The XOR action is very similar to the OR action, but when both bits are 1,
the result is 0, not 1. The two points that are important about XOR are that
if you XOR a binary number with itself, you get zero. If you XOR a binary
number twice with another binary number, you get back to the first number
(Figure 1.8). This can be used for coding and decoding purposes. If a
number is coded by XORing it with a *key’ number, the result can be used as
a code. When this code is XORd again with the ‘key’, the first number is
recovered. Remember when we talk of numbers that this is the raw material
the computer uses. By using ASCII codes we can code any message as a
number or set of numbers, so these methods apply as much to letters of the
alphabet as to simple numbers.

Another set of actions is called the jump set. A jump means a change of
address, rather like the action of GOTO in BASIC. A combination of a test
and a jump is the way the MPU carries out its decision steps. Just as you can
program in BASIC:

IF A=36 THEN GOTO 1050

so the MPU can be made to carry out an instruction which is at an entirely
different address from the normal next address. The MPU is a programmed
device, meaning that it carries out each of its actions as a result of being fed
with an instruction byte which has been stored in the memory. Normally

ROM, RAM, Bytes and Bits 13

when the MPU is fed with an instruction from an address somewhere (in the
RAM, when we use CP/M), it carries out the instruction and then reads the
instruction byte stored in the next address up. This is very similar to the way
BASIC carries out the instructions in a line, and then moves to the next line
in order. A jump instruction would prevent this from happening, and would
instead cause the MPU to read from another address, the one that was
specified in the jump instruction. This jump action can be made to depend
on the result of a test. The test will usually be carried out on the result of the
previous action, whether it gave a zero, positive or negative result for
example.

That isn’t a very long or exciting list, but the actions I've omitted are either
unimportant at this stage, or not particularly different from the ones in the
list. What I want to emphasise is that the magical microprocessorisn’t such a
smart device. What makes it so vital to the computer is that it can be
programmed and that it can carry out its actions very quickly. Equally
important is the fact that the microprocessor can be programmed by
sending it electrical signals.

These signals are sent to eight pins, called the data pins, of the MPU. It
doesn’t take much of a guess to realise that these eight pins correspond to the
eight bits of a byte. Each byte of the memory can therefore affect the MPU
by sharing its electrical signals with the MPU. Since this is a long-winded
description of the process, we call it ‘reading’. Reading means that a byte of
memory is connected along eight lines to the MPU, so that each I bit will
cause a | signal on a data pin, and each 0 bit will cause a 0 signal on a data
pin. Just as reading a paper or listening to a recording does not destroy what
is written or recorded, reading a memory does not change the memory in
any way, and nothing is taken out. The opposite process of writing does,
however, change the memory. Like recording a tape, writing wipes out
whatever existed there before. When the MPU writes a byte to an address in
the RAM memory, whatever was formerly stored at that address is no
longer there; it has been replaced by the new byte. This is why it is so easy to
write new BASIC lines replacing old ones at the same line number.

Table d’'Hote?

Does any CPC6128 owner really write programs in BASIC? It might sound
like a silly question, but it’s a serious one. The actual work of a program is
done by coded instructions to the MPU, and if you write only in BASIC,
you don’t write these. All you do is select from a menu of choices that we call
the BASIC keywords, and arrange them in the order that you hope will
produce the correct results. Your choice is limited to the keywords that are
designed into the ROM. We can’t alter the ROM, and if we want to carry out
an action that is not provided for by a keyword, we must either combine a
number of keywords (a BASIC program) or operate directly on the MPU

14 Introducing Amstrad CP/M Assembly Language

with number codes (machine code). When you have to carry out actions by
combining a number of BASIC commands, the result is clumsy, especially if
each command is a collection of other commands. Direct action is quick,
but it can be difficult. The direct action that I am talking about is machine
code, and much of this book will be devoted to understanding this
‘language’, which is difficult just because it’s simple!

Take a situation which will illustrate this paradox. Suppose you want a
wall built. You could ask a builder. Just tell him that you want a wall built
across the back garden, and then sit back and wait. This is like using BASIC
with a command word for ‘build a wall’. There’s a lot of work to be done, but
you don’t have to bother about the details.

Now think of another possibility. Suppose you had a robot which could
carry out instructions mindlessly but incredibly quickly. You couldn’t tell it
to ‘build a wall’ because these instructions are beyond its understanding.
You have to tell it in detail, such as: ‘stretch a line from a point 85 feet from
the kitchen edge of the house, measured along the fence southwards, to a
point 87 feet from the lounge end of the house measured along that fence
southwards. Dig a trench 18 inches deep and one foot wide along the path of
your line. Mix three bags of sand and two of cement with four barrow-loads
of pebbles for three minutes. Mix water into this until a pail filled with the
mixture will take ten seconds to empty when held upside down. Fill the
trench with the mixture...”. The instructions are very detailed — they have to
be for a brainless robot - but they will be carried out flawlessly and quickly.
If you've forgotten anything, no matter how obvious, it won’t be done.
Forget to specify where the cement, sand and water are kept, how much
mortar, what mixture and where to place it, and your bricks will be put up
without mortar. Forget to specify the height of the wall, and the robot will
keep piling one layer on top of another, like the Sorcerer’s Apprentice, until
someone sneezes and the whole wall falls down.

The parallel with programming is remarkably close. One keyword in
BASIC is like the ‘build a wall’ instruction to the builder. It will cause a lot of
work to be done, drawing on a lot of instructions that are not yours - but it
may not be done as fast as you would like. It might even be done in a way that
you don’t want. If you can be bothered with specifying the detail, machine
code is a lot faster because you are giving your instructions direct to an
incredibly fast but mindless machine, the microprocessor. A CP/M
program has been written in machine code (or converted into machine code)
so that it will run fast and efficiently, taking up only as much of the memory
as is needed. Machine code can be used to make your computer carry out
actions that are simply not provided for in BASIC, though it’s fair to say
that many modern computers allow a much greater range of commands
than early models, and this aspect of machine code is not quite so important
as it used to be.

One last look at the block diagram is needed before we start on the inner
workings of CP/M in the CPC6128. The block which is marked ‘Port’

ROM, RAM, Bytes and Bits 15

includes more than one chip. A port in computing language means
something that is used to pass information, one byte at a time, into or out of
the rest of the system - the MPU, ROM and RAM. The reason for havinga
separate section to handle this is that inputs and outputs are important but
slow actions. By using a port we can let the microprocessor choose when it
wants to read an input or write an output. In addition, we can isolate inputs
and outputs from the normal action of the MPU. This is why nothing
appears on the screen in a BASIC program except where we have a PRINT
command in the program. It’s also why pressing keys has no effect while a
program is being loaded. The port keeps the action of the computer hidden
from you until you actually need to have an input or an output. The
CPC6128 and PCW 8256 use several ports for such purposes as connections
to the keyboard, joysticks, the printer and the disk drive.

Altering memory

We have seen how some of the memory that is used by a CP/M program can
be altered, using the S(et) command of SID. Now this S command is one
that can get you into a lot of trouble unless you know what you are doing.
You can look at the memory of the computer as much as you like, because
the D command only copies; it doesn’t alter what is stored. Using S,
however, can replace one byte by another. If the address that you alter
happens to contain something that is vital to the way the computer works,
then the result will be to send the machine bananas when you try to run the
program! You can expect to see weird patterns on the screen, and to have the
keyboard ‘seize-up’, so that pressing keys has no effect. When this happens,
pressing ESC may restore normal operation, but very often only using
CTRL SHIFT ESC will have a real effect. You may even have to switch off,
and then on again. When you do either of these things, you’ll lose any
program that you had in the memory. When you work with writing or
altering CP/M, then, (which always involves placing bytes directly into
memory) you must be certain that you record any program before you try it.
Failing to do this may mean losing the program and having to type it all over
again. Even if all appears to be well, it’s possible to corrupt the memory so
that some parts of CP/M do not work. Be warned!

We have now looked at all of the important sections of your Amstrad
machine. I’ve used some terms loosely — purists will object to the way I've
used the word ‘port’, for example - but no-one can quarrel with the actions
that are carried out. What we have to do now is look at how the computer is
organised to make use of the MPU, ROM, RAM and ports so that it can be
programmed in BASIC and can run a BASIC program. It looks like a good
place to start another chapter!

Chapter Two
Digging Inside the
CPC6128 and PCW 8256

I don’t mean that literally - you don’t have to open up the case of your
computer. What I do mean is that we are going to look at how the CPC6128
and PCW 8256 are designed to load and run CP/M programs. Once you
know how this is done, you should be able to see how machine code is used,
and this will be very helpful later when we start to look at how we can use
CP/M routines. We'll start with a simplified version of the action of the
whole system, omitting details for the moment.

The ROM of your CPC6128 computer is switched out of action for much
of the time when you are using CP/M, but it can be called on at intervals.
This ROM consists of a large number of short programs - subroutines —
which are written in machine code. The ROM is, in fact, in two parts, one
between addresses 0 and 16383, the other between 49152 and 65535. The
upper ROM contains all the routines for BASIC, the lower one contains the
‘service’ routines which would be needed by any language, and which are
essential at the moment when you switch on the computer. Any language,
for example, will need to use the keyboard, the screen, and the disc system.
There will be at least one machine code subroutine for each keyword in
BASIC, and some of the keywords may require the use of many subroutines
in sequence. When you switch on your CPC6128 computer, the piece of
machine code that is carried out first of all is called the ‘initialisation
routine’. This is a long piece of program, but because machine code is fast,
carrying out instructions at the rate of many thousands per second, you see
very little evidence of all this activity. All you notice is a very slight delay
between switching on and seeing the copyright notice placed on the screen
and then the ‘Ready’ prompt. In this brief time, though, the action of the
RAM part of the memory has been checked, some of the RAM has been
‘written’ with bytes that will be used later, and most of the RAM has been
cleared for use.

Cleared for use as far as the CPC6128 is concerned means that nothing
but zeros will be stored in most of the main bank of RAM. When you switch
off the computer, the RAM loses all trace of stored signals, but when you
switch on again the memory cells don’t continue to store zeros. In each byte,
some of the bits will switch to 1 and some will switch to 0 when power is
applied. This happens quite at random, so that if you could examine what

Digging Inside the CPC6128 and PCW 8256 17

was stored in each byte just after switching on, you would find a set of
meaningless numbers. These would consist of numbers in the range 0 to 255,
the normal range of numbers for a byte of memory. These numbers are
‘garbage’ - they weren’t put into memory deliberately, nor do they form
useful instructions or data.

The first job of the computer, then, is to clean up. In place of the random
numbers, the computer substitutes a set of zeros, a completely clear
memory. When you switch to CP/M, however, the pattern becomes quite
different. For one thing, the computer switches to its second bank of RAM,
the spare 64K that BASIC can use only for screen displays or as a RAM-
disc. CP/M can use practically all of this memory, though sections at the
bottom and at the top are reserved for special purposes. Try this — switch on,
select CP/M, and load SID. Now type:

DC000 FFFF

and then press RETURN. The range of memory addresses we have used
starts with cleared memory, and ends with a part that is reserved for CP/M
use. If this were the main bank of RAM, the locations that we’re looking at
would correspond to characters on the screen. Since it’s in the second bank
of RAM, though, it doesn’t correspond to anything visible. You’ll see at the
start of this memory range that the stored characters are either 00 or FF,
though in the middle of each FF block there are some other characters,
always in the same relative positions among the FFs. These are part of the
system that CP/M uses to identify parts of the memory. Each block of 00 or
FF consists of 256 bytes in all.

The initialising program for CP/M has a lot more to do. Some of the
higher section of RAM, from address DAFF to FFFF, is for ‘system use’.
This is because the machine code subroutines which carry out the actions of
CP/M are stored here, rather than in the ROM, and they also need to store
quantities in memory as they are working. We’ll look at how some of these
address numbers are used in a moment. Before we do, though, it’s essential
to get to grips with the way that these numbers are written in CP/M terms,
using the hexadecimal scale.

Binary, denary and hex

A machine code program consists of a set of number codes. Since each
number code is a way of representing the 1s and Os in a byte of eight bits, it
will consist of numbers between 0 and 255 when we write it in our normal
scale of ten (denary scale). The program is useless until it is fed into the
memory of the CPC6128 computer, because the MPU is a fast device, and
the only way of feeding it with bytes as fast as it can use them is by storing the
bytes in the memory, and letting the MPU help itself to them in order. You
can’t possibly type numbers fast enough to satisfy the MPU, and even

18 Introducing Amstrad CP/M Assembly Language

methods like tape or disc are just not fast enough.

Getting bytes into the memory, then, is an essential part of making a
machine code program work, and we shall look at several methods in more
detail later on. At one time, simple and very short programs would be put
into a memory by the most primitive possible method, using eight switches.
Each switch could be set to give a | or 0 electrical output, and a button could
be pressed to cause the memory to store the number that the switches
represented, and then select the next memory address. Programming like
this is just too tedious, though, and working with binary numbers of 1s and
0s soon makes you cross-eyed. Now that we have computers, it makes sense
to use the computer itself to put numbers into memory, and an equally
obvious step is to use a more convenient number scale.

Just what is a more convenient number scale is a matter that depends on
how you enter the numbers and how much machine code programming you
do. As far as working with CP/M is concerned, though, you don’t really
have any choice. CP/M was written for the convenience of professional
programmers, who use hex numbers, so hex numbers it has to be. All single-
byte numbers can be represented by just two hex digits. In addition to this,
serious machine code programmers write their programs in what is called
assembly language. This uses command words which are shortened versions
of the names of commands to the MPU. A program that is called an
assembler, then, converts these command words into the correct binary
codes. The CP/M assembler, like the other CP/M utilities, shows these
codes on the screen in hex form rather than in denary. In addition, when you
type data numbers in assembly language, you must make use of hex code.
The number codes that are used as instructions have been designed in hex
code, so that we can see much better how commands are related. For
example, we may find that a set of related commands all start with the same
digit when they are written in hex. In denary, this relationship would not be
obvious. Moreover, it’s much easier to write down the binary number which
the computer actually uses when you see the hex version.

The hex scale

Hexadecimal means scale of sixteen, and the reason that it is used so
extensively is that it is naturally suited to representing binary bytes. Four
bits, half of a byte, will represent numbers which lie in the range 0 to 15 in
our ordinary number scale. This is the range of one hex digit (Figure 2.1).
Since we don’t have symbols for digits higher than 9, we have to use the
letters A,B,C,D,E and F to supplement the digits 0 to 9 in the hex scale. The
advantage is that a byte can be represented by a two-digit number, and a
complete address by a four-digit number. Converting between binary and
hex is much simpler than converting between binary and denary. The
number that we write as 10 (ten) in denary is written as OA in hex, eleven as

Digging Inside the CPC6128 and PCW 8256 19

Hex Denary Hex Denary
9 [/} B 11
1 1 C 12
2 2 D 13
3 3 E 14
4 4 F 15
5 5 then
6 6 19 16
7 7 11 17
8 8 to
9 9 20 32
A 19 21 23

etc.

Figure 2.1 Hex and denary digits. Note the range of one hex digit.

OR, twelve as 0C and so on up to fifteen, which is OF. The zero doesn’t have
to be written, but programmers get into the habit of writing a data byte with
two digits and an address with four, even if fewer digits are needed. The
number that follows OF is 10, sixteen in denary, and the scale then repeats to
IF, thirty-one, which is followed by 20, thirty-two.

The maximum size of byte, 255 in denary, is FF in hex. When we write hex
numbers, it’s usual to mark them in some way so that you don’t confuse
them with denary numbers. There’s not much chance of confusing a number
like 3E with a denary number, but a number like 26 might be hex or denary.
The convention that is followed by many programmers is to use a capital H
to mark a hex number, with the H-sign placed after the number. For
example, the number 47H means hex 47, but plain 47 would mean denary
forty-seven. Another method is to use the hashmark before the number, so
that #47 would mean the same as 47H. When you write hex numbers for a
CP/M program on paper, it’s a good idea to follow one of these
conventions. When you are actually typing hex numbers into the computer
under CP/M, though, you don’t need to add the ‘H’ or the ‘#”. Most of the
CP/M utilities assume that you will type in hex numbers, and they will not
work with anything else. You might think that this could be awkward, but
it’s not, because SID provides you with some useful assistance, like a hex
arithmetic calculator, of which more later. The only awkwardness is to
remember when you must use the letter H following a hex number, but we’ll
come to that later.

Now the great value of hex code is how closely it corresponds to binary
code. If you look at the hex-binary table of Figure 2.2, you can see that #9 is
1001 in binary and #F is I111. The hex number #9F is therefore just

20 Introducing Amstrad CP/M Assembly Language

Hex Binary Hex Binary
p 0909 8 1999
! 9091 9 1991
2 919 A 1919
3 P011 B 1911
4 p1p9 (& 1igp
5 p191 D 1191
6 pl1g E 1119
7 111 F 1111

Figure 2.2 Hex and binary digits. Any single hex digit can be written using up to
four binary digits.

Conversion: Hex to Binary

Example: 2CHc.cco. 2H is §@10 binary

CH is 1100 binary
So 2CH is p@10110@ binary (data byte)
Example: 4ATFH.................... 4H is 9199 binary

AH is 1§19 binary
7H is #111 binary
FH is 1111 binary

So 4A7FH is @19@1916@1111111 binary (an address)

Conversion: Binary to Hex

Example: U101 @11g is 6H
1911 is BH
So §1191911 1s 6BH
Example: 111910019010 note that this is not a complete number of
bytes.
Group into fours, starting with Isb:
9919 1s 2H
19691 1s 9H

@110 is 6H and
the remaining 1 is I, making 1692H

Figure 2.3 Converting between hex and binary. This amounts to grouping
digits in fours and using the table of Figure 2.3.

Digging Inside the CPC6128 and PCW 8256 21

10011111 in binary - you simply write down the binary digits that
correspond to the hex digits. Taking another example, the hex byte #B8 is
10111000, because #B is 1011 and #8 is 1000. The conversionin the opposite
direction is just as easy - you group the binary digits in fours, starting at the
least significant (right-hand) side of the number, and then convert each
group into its corresponding hex digit. Figure 2.3 shows examples of the
conversion in each direction so that you can see how easy it is.

Negative numbers

Negative numbers are not very important in CP/M programming, mainly
because the old 8080 chip didn’t need to use them. On the Z80, you
sometimes want the MPU to perform the equivalent of a GOTO, perhaps
jumping to a step which is 30 steps ahead of its present address. This sort of
thing is usually programmed by supplying a data number which is the
number of steps that you want to skip. If you want to jump back to a
previous step, however, you will need to use a negative number for this data
byte. This is very common, because it’s the way that a loop is programmed in
machine code. On the Z80, therefore, you need to know how to write a
negative number in hex and how to recognise one. If, for example, you use
the H command of SID, followed by two numbers, you’ll get the sum of the
numbers, and their difference, printed. As often as not, one of these numbers
will be negative - but will you know?

What makes it awkward is that there is no negative sign in hex arithmetic.
There isn’t one in binary either. The conversion of a number to its negative
form is achieved by a method called complementing, and Figure 2.4 shows
how this is done. At first sight, and very often at second, third, and fourth, it
looks entirely crazy. For example, when you are dealing with a single byte
number, the denary form of the number —1 is 255! You are using a large
positive number to represent a small negative one! It begins to make more

Binary number................... 99119119 Denary 36
1TV 4o 11001901
add ... 11091018 Denary —36

denary number —5
In binary this is 181, and in eight-bit binary is
POYoP1NI1
Inverted. this i1S.....c.oooooviiiiiiiene L1119
A 1smmmmsmamssesmssamsss LTTTIP1T which is the byte for —5

Figure 2.4 The two’s complement, or negative form, of a binary number.

22 Introducing Amstrad CP/M Assembly Language

sense when you look at the numbers written in binary. The eight-bit
numbers that can be regarded as negative all start with a I and the positive
numbers all start with a 0. The MPU can find out which is which just by
testing the left-hand bit, the most significant bit.

It’s a simple method, which the machine can use efficiently, but it does
have disadvantages for mere humans. One of these disadvantages is that the
digits of a negative number are not the same as those of a positive number.
For example, in denary, —40 uses the same digits as +40. In hex, —40
becomes D8H and +40 becomes 28H. The denary number —85 becomes
ABH and +85 becomes 55H. It’s not at all obvious that one is the negative
form of the other. The second disadvantage is that humans cannot
distinguish between a single byte number which is intended to be negative
and one which is just a byte greater than 127. For example, does 9FH mean
159 or does it mean —97? The short answer is that the human operator
doesn’t have to worry. The microprocessor will use the number correctly no
matter how we happen to think of it. The snag is that we have to know what
this correct use is in each case.

Throughout this book, and in others that deal with machine code
programming, you will see the words ‘signed’ and ‘unsigned’ used. A signed
number is one that may be negative or positive. For a single byte number,
values of 0 to 7FH are positive, and values of 80H to FFH are negative. This
corresponds to denary numbers 0 to 127 for positive values and 128 to 255
for negative. Unsigned numbers are always taken as positive. If you find the
number 9CH described as signed, then, you know it’s treated as a negative
number (it’s more than 80H). If it’s described as unsigned, then it’s positive,
and its value is obtained simply by converting. The snag here is that when we
make use of the H command of SID, it will not deal with signs in single
bytes. If, for example, you type: H 2A 2B then what you will see underneath
is 0055, the sum, and FFFF, which is the difference. You get FFFF rather
than FF, because the H command works with hex numbers of four digits.
It’s not a real problem, because you simply ignore the first two digits when
working with single bytes. There’s nothing in SID, however, that will
convert a denary number into a hex number for you. For that, you have to
make use of the HEXS$ function in BASIC, and you should know how to use
that by this time!

The program in memory

Suppose that you have a CP/M program sitting in the memory of your
computer. Just which addresses are used, and for what purposes? To start
with, the second bank of RAM has been switched in, and all of it is in use. At
the bottom end of RAM, there are some important pieces of code and a few
odds and ends in the region from 0000H to 0100H. Take a look at these on
your own machine, using SID with D0000 0100. You’ll see several three-

Digging Inside the CPC6128 and PCW 8256 23

byte sequences starting with C3 at addresses OH, 05H, 30H and 38H. If
anything happens to these addresses, you can expect trouble. You’'ll also
find interesting things around 0082H, if you have a SETKEYS program
arranged so that it auto-boots. If you haven’t used this feature of CP/M,
and you don’t know about it, perhaps I can recommend my book Advanced
Amstrad CPC6128 Computing, published by Collins. In any case, the
SUBMIT file for auto-booting will appear around here. The copyright
notice for CP/M appears at around 0140H and is followed immediately by
the copyright notice for SID. The SID message doesn’t normally appear on
your screen — it’s just stored on the disc and (when you load it) in the
memory. The SID program actually starts high up in the memory, around
#E186 — and this address is, in turn, stored at locations #0030 and #0031.
They are stored, like all addresses, in reverse order, with the higher byte
second. For example, the address E186H is stored as 86 E1 when you see it
on the screen. SID will execute a program for you when you type G followed
by the starting address (then RETURN). You could therefore type GE186,
press RETURN, and see SID return to its # prompt.

At the upper end of the memory are more bytes planted for special

Main
Second 64K First 64K ROM Disc
RAM RAM (Upper) ROM
FFFF s FEFF
E2FF Used for
ccp screen
0BOG
cage
Used for
BASIC
programs
TPA
4000
g10g
Reserved Reserved
Used with Used with Main ROM
Cp/M BASIC & AMSDOS (Lower)

Figure 2.5 The arrangement of ROM and RAM for using CP/M. Practically
everything is done using the second set of RAM.

24 Introducing Amstrad CP/M Assembly Language

purposes. Everything from address DBOOH to FFFFH is forbidden
territory unless you know the CP/M system in considerable detail. By the
time you have read this book, you'll certainly know a lot more about it, but
for real detail, you will need to turn to Digital Research’s own manuals,
which are weighty, expensive, and very comprehensive. If, however, you
aren’t going to write programs in CP/M professionally, you won't really
need these.

The arrangement of the RAM and ROM for CP/M is shown in Figure
2.5. The region from 0000H to 00FFH is known as Page 0 (no, there are no
thrills in addresses 0200H to 02FFH), and from 0100H to around DAFFH
is the TPA, the transient program area. This is where CP/M program bytes
are stored when a program is loaded in, and where any RAM that these
programs might need is located. Above the TP A come the fixed programs of
CP/M. The part which is labelled CCP means console command processor,
and it contains addresses for all the routines that relate to the keyboard and
the screen. This is the first portion of the reserved part of the RAM, starting
at address DBOOH (immediately following DAFF, remember), and it
extends up to address E2FFH. The next section is called BDOS, and is
concerned with disc operations. It extends from E300H to EFFFH. The last
section of the memory is occupied with several parts of BIOS, the basic
input/output system, starting at FOOOH and going all the way to the end of
RAM memory at FFFFH. Consider all of these reserved addresses as being
surrounded by barbed wire!

Running a program

Now that we have looked at the way in which a program and the routines of
CP/M are stored in the memory of the CPC6128 and PCW 8256 computer,
we can give a little thought as to how the program runs. This action is carried
out directly by the microprocessor chip, because the whole CP/M program
is written in machine code for the microprocessor. Any machine code
program must be run by giving a starting address to the microprocessor.
This address is, except for SID, the usual 0100 for all computers that run
CP/M. Any program that is read from the disc as a COM file will locate
itself in memory starting at 0100H, the bottom end of the TPA. Even SID
does this, but then gallops up into addresses right at the top of the memory,
replacing some of the routines above #DB00, immediately it starts running.

Try, for example, this exercise. With SID in place, type ELANGUAGE.
COM, and place side | of the System discs in the drive. The E is the SID
command to load a file, and the filename must follow it immediately, as in
all the SID commands. When you press RETURN, SID will read the size of
the new file LANGUAGE.COM from the disc, and then place the new file
into the memory starting at 0100. This will wipe out the CP/M and SID
copyright notices, and replace them with the bytes of the new file,

Digging Inside the CPC6128 and PCW 8256 25

LANGUAGE.COM in this case. If you're wondering why I always use
LANGUAGE.COM as an example, by the way, it’s because it’s a short file
which loads quickly, and doesn’t take up much space in the memory. It’s
not, for some other reasons, the best example to use because it doesn’t start in
a way that is strictly in CP/M code. This is a problem that you may find with
some of the utilities that are specific to the CPC6128, as distinct from the
CP/M utilities that have been written by Digital Research for any CP/M
machines.

The first two bytes of LANGUAGE.COM are 18 6A, and these are Z80
instructions which amount to a direction to go to the address 016C
(obtained by adding 6A to 0100 + 2). This is a Z80 instruction which does
not appear on the 8080, so if you try to get SID to trace what is happening,
the result will be a return to BASIC, or a complete lockup, with none of the
keys having any effect. In the second case, you’ll have to switch off and then
on again. In either case, you’ll have to load CP/M all over again. This is just
one of the pitfalls that await the unwary CP/M user who is trying to get to
grips with this system, and it’s another reason why some books that were
written in the early days of CP/M are so useless for exploring this new
version in its Amstrad form.

Finally, before we really get to grips with the mysteries, another point
about programming for CP/M. The important thing about a CP/M
program is that it should start at address 0100H. If you want a CP/M
program to run on any CP/M machine, including the older machines that
used the 8080 and 8085 chips, then you have to write in 8080 code. Tools for
writing 8080 code are part of the package of CP/M utilities that you have on
your System discs. Nowadays, however, all of the 8-bit computers that run
CP/M use the Z80, and the 8080 and 8085 are almost forgotten. This allows
you to use Z80 programming aids, like the ZEN program, to write Z80 code,
provided you write such programs into the form of a .COM file. You can
also program in BASIC, provided you buy a BASIC compiler which will
run under CP/M and make COM files. This allows you to create programs
using BASIC, and then convert them into machine code files of the .COM
type which will run like any other CP/M file. This is the simplest way of
creating large programs to run under CP/M. It may not make the most
compact or fastest-running CP/M programs, but it’s very much easier than
trying to create a large program using only the software tools in the System
discs. You can also get compilers which will run under CP/M for the
language which is called ‘C’, also for the very popular language Pascal. Once
again, the use of suitable compilers will result in CP/ M programs which run
fast, will be more efficient than BASIC of any type, and which are much
easier to write than assembly language. This i1s why I shall concentrate in this
book on using assembly language for short routines, and for things that
aren’t provided for in compilers. In addition, though, this book concentrates
on 8080 code, whereas the compilers will all generate Z80 code. You can’t
win ‘em all!

Chapter Three

The Miracle
Microprocessor

In this chapter, we’ll start to get to grips with the way that the 8080
microprocessor works. The microprocessor, or MPU is, you remember, the
‘doing’ part of the computer as distinct from the storing part (memory) or
the input/output part (ports), so that what the microprocessor does will
control what the rest of the computer does. Its design also decides how much
memory can be used at any given time.

The MPU itself consists of a set of memory stores for numbers, but witha
lot of organisation added. By means of circuits that are very aptly called
gates, the way in which the electrical signals for bytes are shared between
different parts of the MPU’s own memory can be controlled. It is these
sharing actions that constitute the addition, subtraction, logic and other
actions of the MPU. Each of the actions is programmed. Nothing will
happen unless an instruction byte is present in the form of a | ora 0 signal at
each of the eight data terminals, and these bytes are used to control the gates
inside the MPU. What makes the whole system so useful is that because the
program instructions are in the form of electrical signals on eight lines, these
signals can be changed very rapidly. The speed is decided by another
electrical circuit called a clock-pulse generator, or clock for short. The speed
that has been chosen as standard for the clock of the CPC6128 computer is
very fast indeed. You may be used to clocks that tick once a second, but the
‘clock’ of the CPC6128 computer ticks four million times each second. This
doesn’t mean that it can carry out four million instructions in each second,
because some instructions need many clock ticks to carry them out, but it
does mean that things happen fast! They have to, because the MPU operates
in sequence. It can do only one thing at a time, and so each operation has to
be carried out quickly. In one operation, for example, one tick of the clock
may be required to feed an instruction byte to the MPU, and another to feed
a data byte. The action which is needed may then need another two or more
ticks, so that a complete instruction may require four or more clock ticks.

Machine code

A program for the MPU, as we have seen, consists of number codes, each

The Miracle Microprocessor 27

being a number between 0 and 255 (a single-byte number). Some of these
numbers may be instruction bytes which cause the MPU to do something.
Others may be data bytes, which are numbers to add, or store or shift, or
which may be ASCII codes for letters. The MPU can’t tell which is which - it
simply does as it is instructed. It’s up to the programmer to sort out the
numbers and put them into the correct order. They then have to be stored in
this correct order in the memory.

The correct order, as far as the MPU is concerned, is quite simple. The
first byte that is fed to the MPU after switching on the computer or after
completing another instruction, is taken as being a new instruction byte.
This means a byte which will make the MPU do something. Now many of
the 8080 (and Z80) instructions consist of just one byte, and need no data.
Others may be followed by one or two bytes of data, and some (Z80)
instructions need two bytes (or more) rather than one, and are also followed
by data. When the MPU reads an instruction byte, it analyses the
instruction number to find if the instruction is one that has to be followed by
one or more other bytes. If, for example, the instruction byte is one that has
to be followed by two data bytes, then when the MPU analyses the first byte,
it will treat the next two bytes fed to it as being the data bytes for that
instruction. This action of the MPU is completely automatic, and is built
into it. The snag is that the machine code programmer must work to exactly
the same rules, and get the program right — 100% correct is just about good
enough. If you feed a microprocessor with an instruction byte when it
expects a data byte or with a data byte when it expects an instruction byte,
then you’ll have trouble. Trouble nearly always means an endless loop,
which causes the screen to ‘freeze’ as it is, and the keys to have no effect. Even
the CTRL SHIFT ESC keys may not be able to break the CPC6128
computer out of such a loop, and the only remedy then will be to switch off.
You will generally lose whatever program you had in store, so that it’s vitally
important to save any machine code program, or anything that will cause
machine code to be used, on disc before you use it.

What I want to stress at this point is that machine code programming is
tedious. It isn’t necessarily difficult - you are drawing up a set of simple
instructions for a simple machine - but it's often difficult to remember just
how much detail is needed. When you program in BASIC, the machine’s
error messages will keep you right, and help to detect mistakes. When you
use machine code, you're on your own, and you have to sort out your own
mistakes. In this respect, the type of program that is called an ‘assembler’
helps considerably. We'll look again at this point shortly. In the meantime,
the best way to learn about machine code is to write it, use it, and make your
own mistakes.

Registers - PC and accumulator
A microprocessor consists of sets of memories, of a rather different type

28 Introducing Amstrad CP/M Assembly Language

from ROM or RAM, which are called registers. These registers can be
connected to each other and to the pins on the body of the MPU by the
circuits that are called gates. All the actions of the MPU are carried out by
making these internal connections. In this chapter, we shall look at some of
the most important registers of the 8080 and how they are used. These
register types are also used in the Z80, though the Z80 has several additional
registers that are not present in the 8080. A good starting point is the register
called the PC - short for program counter.

No, it doesn’t count programs - what is does is count the steps in a
program. The PC is a sixteen-bit (two byte) register which can store a full-
sized address number, up to FFFFH (65535 denary). Its purpose is to store
an address number, and the number that is stored in the PC will be
incremented (increased by 1) each time an instruction is completed, or when
another byte is needed. For example, if the PC holds the address 1F3AH,
and this address contains an instruction byte, then the PC will increment to
1F3BH whenever the MPU is ready for another byte. The next byte will then
be read from this new address. When the computer is switched on, the PC
address must be set to where the first instruction of the ROM happens to be.

What makes the PC so important is that it’s the automatic way by which
the memory is used both for reading and writing. When the PC contains an
address number, the electrical signals that correspond to the Os and Is of that
address appear on a set of connections, collectively called the address bus,
which link the MPU to all of the memory, both RAM and ROM. The
number that is stored in the PC will select one byte in the memory, the byte
whose address number it happens to be. At the start of a read operation, the
MPU will send out a signal called the read signal on another line, and this
will cause the memory to connect up the portion that has been selected to
another set of lines, the data bus. The signals on the data bus then
correspond to the pattern of Os and 1s stored in the byte of memory that has
been selected by the address in the PC. Reading means that these signals are
copied into a register within the MPU. Each time the number in the PC
changes, another byte of memory is selected, so that this is the way by which
the MPU can keep itself fed with bytes. When the MPU is ready for another
byte, the PC increments, and another read signal is sent out. Similarly, fora
write operation, the PC holds the address number, the signals on the address
bus select the correct byte in the memory, and another register in the 8080
shares its electrical signals with the lines of the data bus so that the memory
byte is forced to copy. Having done this, the number in the PC is
incremented ready for the next action.

There are other ways in which the PC number can be changed, but for the
moment we'll pass over that and look at another register, the accumulator.
The accumulator of a microprocessor is the main ‘doing’ register of the
MPU. This means that you would normally use it to store any number that
you wanted to transfer somewhere else, or add to or carry out any other
operation upon. The name of accumulator comes from the way in which this

The Miracle Microprocessor 29

register operates. If you have a number stored in the accumulator, and you
add another number to it, then the result is also stored in the accumulator.
The nearest equivalent in BASIC is using a variable A, and writing the line:

A=A+N

where N is a number variable. The result of this BASIC line is to add N to the
old value of A, and make A equal this new value. The old value of A is then
lost. The accumulator acts in the same way, with the important difference
that the 8080 accumulator can’t store a number greater than 255 (denary).

The 8080 has one main accumulator register, labelled A. The importance
of this is that it is used much more than the other registers, because so many
actions can be carried out more quickly, more conveniently, or perhaps
only, in the accumulator. When we read a byte from the memory, we usually
place it in the accumulator. When we carry out any arithmetic or logic
action, it will normally be done in the accumulator and the result will also be
stored in the accumulator. Unlike earlier designs of microprocessors, the
8080 had a large number of other registers, several of which can be used in
much the same way as the accumulator, but none of them has quite such a
large range of possible actions.

Addressing methods

When we program only in BASIC, we don’t have to worry about memory
addresses at all unless we are using instructions like PEEK or POKE. The
task of finding where bytes are stored is then dealt with by the operating
system of the machine. Similarly, when you run and use a CP/M program
you need not worry about where the program stores the quantities it is
working on, because all that has been take care of. Remembering our
comparison with wall-building, though, we can expect that when we carry
out machine code programming for ourselves, we shall have to specify each
number we use, or alternatively the address at which the number is stored.
This way in which we obtain a number, or find a place to store it, is called the
‘addressing method’. What makes the choice of addressing method
particularly important is that a different code number is needed for each
different addressing method for each command. This means that each
command exists in several different versions, with a different code for each
addressing method. A list of all the 8080 addressing methods at this stage
would be rather baffling, and for that reason has been consigned to
Appendix B. What we shall do here is look at some examples of selected
addressing methods and the way we write them in 8080 assembly language.

Assembly language

Trying to write machine code directly as a set of numbers is a very difficult

30 Introducing Amstrad CP/M Assembly Language

process which is liable to certain errors from beginning to end. The most
useful way of starting to write a program is to write it in a set of steps in what
is called assembly language (or assembler language). This is a set of
abbreviated command words, called mnemonics, along with numbers which
are the data or addiess numbers. The numbers must be in hex form for the
8080 assembler program on your System disc. Each line of an assembly
language program indicates one microprocessor action, and this set of
instructions is later ‘assembled’ into machine code, hence the name. In this
way, the machine carries out all the tedious ‘looking-up’ actions which are so
boring for a human to do. The human part then consists of planning the
program and writing it in this assembly language. There is a different
assembly language for each different type of microprocessor.

The aim of each line of an assembly language program is to specify the
action and the data or address that is needed to carry out that action, just as
when we make use of TAB in BASIC we need to complete the command
with a number. Like BASIC, assembly language has to be written in the
correct way (with correct syntax). The part of the assembly language that
specifies what is to be done is called the operator, and the part which
specifies what the action is done to or on is called the operand. A few
instructions need no operand, and we’ll look at some later.

An example makes this easier. Suppose we look at the assembly language
line:

MVI A,12

The operator is MV, a shortened version of ‘move immediate’, meaning
that a byte is to be copied from the following place in memory into a register.
The operand consists of two parts, A and 12. The A means that the
accumulator register A is to be loaded with a byte. The other part of the
operand is 12, which is always 12 hexadecimal, rather than twelve denary.
The use of a MVI instruction rather than the alternative MOV shows that
the addressing method to be employed is a method called ‘immediate
addressing’, and that the single-byte number is to be loaded.

The whole line, then, should have the effect of placing the number 12H
into the accumulator register A. It is the equivalent in machine code terms of
the BASIC instruction:

A=&l12

if you could imagine that the memory which held the number was inside the
microprocessor rather than being part of the RAM memory, and that it was
labelled A.

A command such as MVI A,12 is said to use immediate addressing,
because the byte which is loaded into the accumulator must be stored in the
memory byte whose address immediately follows that of the instruction
byte. There is one code number for the MVI A, part of the whole instruction,
and this byte is 3EH, so that the hex sequence in memory of 3E 12 will

The Miracle Microprocessor 31

represent the entire command MVI A,12. It’s a lot easier to remember what
MVI A,12 means than to interpret the numbers 3EH and 12H stored in the
memory, however, which is why we use assembly language as much as
possible. In Z80 code, incidentally, this instruction uses different
mnemonics (LD A,#12), but has the same code, because the code is what
makes the action happen in either type of microprocessor.

Immediate addressing like this can be convenient, but it ties you down to
the use of one definite number. It’s rather like programming in BASIC:

N=4*12+3
rather than
N=A*B+ C

In the first example, N can never be anything else but 51, and we might just
as well have written: N = 51. The second example is very much more
flexible, and the value of N depends on what values we choose for the
variables A, B and C. When a machine code program is held in RAM, the
numbers which are loaded by this immediate addressing method can be
changed if we must change them, by changing the program. When the
program is held in ROM, however, no change is possible - and that’s just
one reason for needing other addressing methods. One of these other

Instruction is: Addresses
LDA A@59 in hex

«— start of instruction

3A ApPP

59 App1

Ap ApPp2
(bytein A)

APP3 next instruction code

other codes

~e—=byte which is loaded into
93 AP59 thc accumulator after address
A@P2 has been read

Figure 3.1 How the extended (absolute) addressing method works.

32 Introducing Amstrad CP/M Assembly Language

methods is called extended addressing - alternative names are direct or
absolute addressing.

Extended addressing uses a complete two-byte address as its operand.
This creates a lot of work for the microprocessor, because when it has read
the code for the operator, it will then have to read rwo more bytes to find the
memory address at which the data is stored. It will then have to place this
address into the PC, read in the data byte, carry out the operation, and then
restore the next correct address into the PC. Figure 3.1 shows in diagram
form what has to be done. An extended addressed operation is therefore
much slower to carry out than an immediate one, but since any byte may be
stored at the address which is specified, it’s easy to alter the data if we need
to. We can even make the program alter the data for itself!

Suppose, to take an example of straightforward extended addressing,

we have the instruction:
LDA 7FFE

In this slice of assembly language, the operator is LDA, meaning that a load
is to be carried out using the accumulator, and from the address 7FFEH.
The effect of the action will be to take a copy of the byte stored at 7FFEH
and put it into the accumulator. What you have to remember is that when
you use LDA 7FFE, what is put into the accumulator A is not 7FFEH,
which is a two-byte address, but the data byte which is stored in memory at
this address. The effect of the complete instruction, then, is to place a copy of
the byte which is stored at 7FFEH into the accumulator A of the 8080.
When the instruction has been completed, the address 7FFEH will still hold
its own copy of the byte, because reading a memory does not change the
content of the memory in any way. The content of the accumulator will have
changed, however, because it must now be the same as the byte that was held
in address 7FFEH. In a listing of 8080 instructions, this type of addressing
would appear as LDA nnnn.

We can also use the extended addressing method in a command which
will store a byte into the memory. The command:

STA 7FFF

means that the byte that is stored in the accumulator A is to be copied to
memory at address 7FFFH. This action does change the content of this
memory address, but the accumulator A will still hold the same byte after
the instruction has been carried out.

Register indexed addressing

Immediate addressing and extended addressing (also called direct
addressing) are both useful, but the 8080 also permits another type of
addressing called register indexed addressing. The register indexed

The Miracle Microprocessor 33

addressing method is so called because a register (more accurately, a pair of
registers) will be used to hold the address. This type of addressing is a
speciality of the 8080 and is found mainly on this microprocessor and others
that have developed from it, like the Z80 and the 8085. In the 8080, the
method depends on being able to combine certain pairs of eight-bit registers
and use them as if each pair were one sixteen-bit register. This ability to use
registers singly or in pairs, as you choose, is just one of the features which
made the 8080 such an important microprocessor. The design principles of
the 8080, unlike some other early types of microprocessors, were used in
many later designs, and have now been carried over into newer sixteen-bit
micros. By learning 8080 machine code, then, you are preparing yourself for
whatever comes along next!

There are no less than three sets of these pairs of registers in the 8080, and
for convenience, they are labelled HL, BC and DE. The single registers are
labelled H, L, B, C, D, and E, but we can only put them together in the three
groupings shown. Singly, the registers can be used as if they were spare
accumulators, but with fewer actions. Of the three ‘double’ registers or
register pairs, the HL pair is the most frequently used for register indexed
addressing. We can load a complete sixteen-bit address into the HL pair of
registers by using a command which is written in assembly language as:

LXI1 H,7FFF

~ taking an example of an address to use. This means that the high byte of
the address, 7FH in this example, will be held in the H register (the H should
remind you of High) and the low-byte of FFH is stored in the L (for Low)
register. You can change either the high byte or the low byte, incidentally, by
loading the H or L register independently. Having put this address into the
register pair, we can then make use of the byte which is stored at the address
7FFFH by a command such as:

MOV AM

which means that the accumulator is to be loaded from the byte whose
memory address is stored in HL. In our example, this means the byte which
is stored at the address 7FFFH, and the letter M is used to remind us that we
are loading from memory. If we changed the address in the HL registers, we
would, of course, load a different byte from the different address. We can
equally easily store a byte from the accumulator to this address by reversing
the order of the parts of the operand. For example, if we use:

MOV M A

then the byte in the accumulator is copied to address 7FFFH, assuming that
this is still the address that is stored in HL. Remember that the letter M used
in this way means the memory address that is stored in HL, and that the
order of the parts of the operand is destination, source.

Now you might think that this is just a rather long-winded way of writing

34 Introducing Amstrad CP/M Assembly Language

a command such as LDA,7FFF, but there is a rather important difference.
Once an address number has been stored in the register pair HL, we can
increment or decrement that address with a single-byte instruction. If, for
example, we have loaded HL with the address 7FFFH, then the instruction
DCX H will make the address number which is stored in HL equal to
7FFEH, one less. If we now use MOV A,M again, then the load will this
time be from the address 7FFEH, not 7FFFH as it was before. Ifa program
requires a lot of bytes to be loaded from a consecutive set of addresses, then,
this allows the action to be done in a loop, with just one MOV AM
instruction and one DCX H instruction in the loop. You could, of course,
just as easily use INX H in the loop so that the address number that is held in
HL is incremented rather than being decremented. You can, incidentally,
increment or decrement H or L separately, and you can use the commands
INR M and DCR M which will increment or decrement the byte which is
stored at the address that is held in HL! That’s going too far for the moment,
however, so let’s get our feet back on the ground.

The other 8080 registers

We've mentioned a number of the 8080 registers already, and a quick
reminder might be useful. The PC is the addressing register, which keeps a
count of the address of each instruction byte and data byte in a program. It’s
the ‘where are we now’ register of the 8080, keeping track of the memory
location which is being used. When a machine code program is to be run,
this is done by placing the address of the first instruction byte of the program
into the PC. For any CP/M program, this first address will always be
0100H. The rest is automatic, so that providing the program has been
correctly written, the MPU will take over. To run a machine code program,
then, we need a command which will place the correct address into the PC,
and this is part of the action that is carried out when you type the name of a
.COM file in CP/M and press RETURN.

The accumulator is the register in which most of the work is done. It’s so
important that we’ll devote a large chunk of the next chapter to the actions
that can be carried out in the accumulator. There are six other single-byte
registers, which are labelled B, C, D, E, H and L which can be used in the
way that we use the accumulator itself, though none offers quite such a wide
range of actions. In addition, as we have seen, these registers can be grouped
as HL, BC and DE to store complete sixteen-bit address numbers. These
register pairs can then be used much as we used HL, but in place of
commands like MOV A,M, we use commands suchas LDAX Band LDAX
D. A limited number of sixteen-bit arithmetic operations are also possible in
the HL register pair. Another sixteen-bit register is labelled as SP, meaning
stack pointer. As we shall see later, the stack is a piece of memory which is
used for temporary storage while a machine code program is running, and

The Miracle Microprocessor 35

the stack pointer register is used to keep track of addresses in this ‘stack’.
Just to illustrate how this is used, have you ever wondered how a GOSUB in
BASIC could go to a new line, but afterwards return to the correct place?
This happens because when the GOSUB is carried out, the correct address
to return to is stored in the stack memory, and the stack pointer register is
used to refer to this address. When the subroutine is over, then, the stack
pointer indicates what address in the stack has to be used to get the correct
return address back into the PC. That’s a simplified version of what
happens, and we’ll look at the action in more detail later. One important
register remains, however, the flag register.

The flag register

The flag register, usually referred to as the F register but sometimes called
the status register, isn’t really a register like the others. You can’t do
anything with the bits in this register apart from test them, and they don’t
even fit together as a number. What the flag register is used for is as a sort of
electronic notepad. Each bit in the register (there are eight of them) is used to
record what happened at the previous step of the program. If the previous
step was a subtraction that left the A register storing zero, then one of the
bits in the flag register will go from value 0 to value 1 to bring this to the
attention of the MPU. If you add a number taken from memory to the
number in an accumulator, and the result consists of nine bits instead of
eight (Figure 3.2) then another of the bits in the flag register is ‘set’, meaning
that it goes from0 to 1. If the most significant bit in a register goes from0 to 1
(which might mean a negative number), then another of the flag bits is set.
Each bit in the flag register, then, is used to keep a track of what has just
happened. In particular, the flag register keeps track of what has just
happened in the accumulator. What makes the flag register so important is

Number in accumulator 19119119
Number added 11999101
Result 181111011

This consists of nine bits, and the accumulator can
hold only eight. The most significant bit is trans-
ferred to the carry flag of the status register.

Accumulator now holds 1111011
Carry bit is set (equal to 1)

Figure 3.2 Why the carry bit is needed.

36 Introducing Amstrad CP/M Assembly Language

7 6 5 4 3 2 1 ® bit position

S z X | H | X |PV|N C

Carry flag—setif there is acarry orborrow inarithmetic C—carry flag

N-Flag—set for subtract operation N—add/subtract flag
Z-Flag—set by zero result of some operations P/V —parityloverflow fiag
S-Sign flag—set if result is negative H—half-carry flag

Z—zero flag

S—sign flag

X—not used

(Other flags have rather specialised uses)

Figure 3.3 The bits of the flag, or processor status, register. Only three of these,
N,Z and C, are extensively used in most programs. The diagram applies to both
8080 and Z80, but flag 2 is used only for parity detection in the 8080.

that you can make branch commands depend on whether a flag bit is set (to
1) or reset (to 0).

Figure 3.3 shows how the bits of the flag register of the 8080 are arranged.
Of these bits, numbers 0, 6 and 7 are the ones we are most likely to use at the
start of a machine code career. The use of the others is rather more
specialised than we need at the moment. Bit 0 is the carry flag. This is set (to
1) if a piece of addition has resulted in a carry from the most significant bit of
a register. If there is no carry, the bit remains reset. When a subtraction is
being carried out (or a similar operation like comparison) then this bit will
be used to indicate if a ‘borrow” was needed. It can for some purposes be
used as a ninth bit for the accumulator, particularly for rotate operations in
which the bits in a byte are all shifted by one place. The carry bit is used by all
of the addition and subtraction operations of the 8080, even the operations
that do not use the accumulator. This is something that you have to be
careful about. Any operation that is carried out in the accumulator, apart
from a load (or store) will set flags, and many operations in other registers
do also. You have to be careful, however, to make sure when you are using
flags, that they will have been affected in the way that you expect by the
previous operation.

The zero flag is bit 6 of the flag register. It is set if the result of the previous
operation was exactly zero, but will be reset (0) otherwise. It’s a useful way of
detecting equality of two bytes - subtract one from the other, and if the zero
flag is set, then the two were equal. The CMP (compare) action will set or
reset this flag wirhour actually carrying out the subtraction action. The
CMP instruction can be used on/y with the accumulator, so that it always
results in flags being affected. The sign flag, number 7, is set if the number
resulting in an action in a register has its most significant bit equalto I. This
is the type of number that might be a negative number if we are working with
signed numbers. This bit is therefore used extensively when we are working
with signed numbers.

The Miracle Microprocessor 37

Like most MPUs, the 8080 does not allow the programmer to work in any
easy way with the contents of the flag register. You can set the carry flag by
using the STC instruction byte, and you can ensure that the carry flag is reset
by using XRA A command, which also zeros the accumulator. It is also
possible to read the flag register contents into registers C, L or E by storing A
and F on the stack and then reading into BC, HL or DE. Normally, though,
you won’t ever want to alter the contents of the flag register. You very
seldom know or care about what is stored in it, and its main importance to
you is that it controls jumps. To make another comparison with BASIC,
suppose we had programmed:

100 IF A=0 THEN 300

which makes a ‘jump’ to line 300 if a variable A stores the value zero. When
the program runs, we might not know at any particular instant what is
stored in A, but we do know that the jump will take place if variable A stores
zero. The machine code version of this action is:

JZ nnnn

where JZ is the operator, meaning jump if zero, and the operand consists of
the address nnnn, four hex digits. If the accumulator contains zero, then the
new address which has been shown as nnnn above will be put into the PC,
and execution will then start from that point. If Z=0, meaning that the
accumulator does not store a zero, then the jump instruction will be ignored,
and the PC will increment in its usual way. When the microprocessor carries
out this action, then, the single byte of code that represents the JZ part will
cause the 8080 to check the Z flag in the flag register.

One peculiarity of the 8080, which was carried over to the Z80 is that only
certain actions, mainly actions that affect the accumulator, will cause flags
in the flag register to be affected. This takes a lot of getting used to if you
have ever programmed other types of microprocessors, particularly the 6502
or 6809. In particular, load and store operations never affect flags in any
way, so that a flag which has been set before a load or store operation will
still be set after that operation. This can at times be very useful. Suppose, for
example, that we have a piece of assembly language which reads:

MOV AM
DCR A
LDAX D
JZ nnnn

then the flags are unaffected by the LDAX D step. If the DCR A (decrement
byte in the accumulator) step had caused the contents of the accumulator to
become zero, then the zero flag would be set at this stage. This zero flag will
not be affected by the LDAX D step, even though this step places a new byte
into the accumulator so that it no longer contains zero. The jump at the
JZ nnnn step will therefore take place, even though the accumulator now

38 Introducing Amstrad CP/M Assembly Language

contains a byte which is not zero. This can be very useful at times, because it
can save having to repeat a loading step. It’s something that you’ll appreciate
later if you become really hooked on machine code.

To sum up all of this information on registers, Figure 3.4 shows a map of
all the 8080 registers. The registers are shown in pairs to indicate the
grouping for sixteen-bit use. The groupings HL, BC and DE are already
familiar to you, but you will see that the accumulator A and flag register F
are also grouped as AF, but abbreviated to PSW (processor status word).
This is because there are a few operations which treat these two registers as if
they were one single sixteen-bit register. We’ll come to that point later when
we look at stack use.

—8—>8 —

A F PSW
B C BC
D E DE
H L HL
PE PL
5P &P
L 16 =

Figure 3.4 A 'map’ of the 8080 registers, all of which are present in the Z80.
The Z80 has additional registers which we ignore when programming for
CP/M.

Chapter Four
Register Actions

Accumulator actions

In this chapter, we’re going to look in a lot more detail at what can be done in
the registers of the 8080, which means also in some of the registers of the
Z80. By this time, you're probably getting impatient with having nothing
that you can try for yourself on your own computer. That’s because machine
code, and particularly CP/M code, isn’t something that you can dip into in
easy stages. There isn’t much point in having an example to try, if everything
about it is baffling, and that’s just how it is until you know what you are
doing. Slog on, you're nearly there!

Since the accumulator is the main single-byte register, we can list its
actions and describe them in detail, knowing that whatever holds good for
the accumulator of the 8080 will also be a useful guide for the other single-
byte registers. Of all the accumulator actions, simple transfer of a byte is by
far the most important. We don’t, for example, normally carry out any form
of arithmetic on ASCII code numbers, so the main actions that we perform
on these bytes are loading and storing. We load the accumulator with a byte
copied from one memory address, and store it at another. Very few
computer systems allow a byte to be moved directly from one address to
another, so the rather clumsy-looking method of loading from one address
and storing to another is used almost exclusively. In assembly language, and
using direct addressing, this would look like:

LDA SOURCE
STA DEST

The first line copies a byte in address SOURCE into the accumulator. The
same byte is then copied to address DEST in the next line. I have used the
words, SOURCE and DEST, in place of actual address numbers for two
reasons. One is that it helps you to remember that these can be an) valid
address numbers that you want to use. The other is that this is just how we
use assembly language, using words as ‘labels’ wherever possible rather than
definite address numbers. If you use a number, you're stuck with it, but if
you use a word, you can allocate a number to it only when you actually have
to enter the program into the computer. This makes the design, planning,
and alteration of a program a lot easier. It’s like using variables in place of
constants in a language like BASIC. Suppose, for example, that you have a
BASIC program that carries out VAT calculations. Do you put steps like

40 Introducing Amstrad CP/M Assembly Language

X=A*.15 in? Not if you know what you’re doing! What you should use is
X=A*VT. This way, the variable VT carries the value of VAT. The
important reason for doing this is that it needs to be assigned just once. If the
rate of VAT changes to .18, all you have to do is alter a line that says
VT=.15 to one that reads VT =.18. Using a ‘label’ (a variable name) is
better than using a specific number here, and the same applies to assembly
language. The example shows the accumulator being loaded using extended
addressing, but you could, of course, load the accumulator immediately,
and then store the byte using extended addressing. You could also load or
store using an address in the HL registers, using MOV A;M and MOV M,A,
or you could use addresses that were held in the BC or DE register pairs,
using LDAX and STAX commands. There are always many options for
addressing methods when you carry out any action that involves loading the
accumulator. Examples in this book will not show every possible addressing
method for each example, and you will simply have to get used to the
options gradually by experience.

The next most important group of accumulator actions is the arithmetic
and logic group, which contains addition, subtraction, increment,
decrement, AND, OR and XOR. We can add to it the rotate action which
we looked at briefly in the previous chapter. What we decide to place in this
group is rather arbitrary, and many books place the CMP command also in
this group. We'll start with the add and subtract operations. The 8080 has
two varieties of these commands, the difference being the use of the carry bit
in the F register. When the accumulator is used, as it is for most operations,
the accumulator contains a byte before the action starts. Another byte is
then added, from a different register or memory address, and the result of
the action (addition or subtraction) is also stored in the accumulator.
Sticking to immediate addressing for the moment, the effect of AD10A (add
immediate to accumulator) will be to add the number ten (O0AH) to the
contents of the accumulator. The carry flag is ignored when the addition is
carried out, but it might be set following the addition. For example, if the
accumulator register contained 2BH (denary 43) before ADI0QA, then the
result will be that the accumulator contains 35H (denary 53), and the carry
bit is reset (to 0) because there is no carry. On the other hand, if the
accumulator had contained the number FOH (denary 249), then the effect of
ADI 0A would be to leave the accumulator storing #03, and the carry bit set.
Why? Because FOH+0AH=103H, and since the accumulator can store
only one byte (the lower two digits of this hex number), then it stores the
03H, and the ‘I’ causes the carry bit to be set. Once again, it doesn’t matter
whether the carry bit was set or not before the addition.

It’s very different if we use the other add command, ACI. ACI means ‘add
immediate with carry’, and it will e/ways add the carry flag number to the
other number. If, for example, we have the number 2BH in the accumulator
and then use ACI 0A, then the result will be 35H as before if the carry bit was
reset (0) before the addition. If the carry bit was ser however (equal to 1),

Register Actions 41

then the result of the addition would be 36H, one more. The reason for
having two sets of addition commands is that we sometimes need to add ina
carry (arithmetic on numbers that use more than one byte, for example), but
just as often we don’t want one (arithmetic with one-byte numbers, for
example). By having two sets of commands, we don’t need to know in
advance whether the carry bit is set or not. Microprocessors which don’t use
two sets of commands like this need to have commands which will set or
reset the carry bit. The more common forms of these two commands are
ADC for add with carry, and ADD for add, no carry. The subtraction
commands SUI and SUB (ignore carry) and SBI and SBB (use carry)
perform in the same way. When SBB or SBI is used, the carry value is also
subtracted. All of these arithmetic commands exist in a variety of addressing
methods, though I have used immediate addressing in the illustrations for
the sake of simplicity. Addition and subtraction can also be carried out with
some sixteen-bit registers, notably HL. When this is done, the result is also
stored in the same sixteen-bit register.

The INR and DCR commands are straightforward by comparison. INR
and DCR can be used to increment or decrement any of the single-byte
registers, so we can use commands such as INR A, DCR C, INR H, and so
on. These commands do not affect the carry bit but will always affect the Z
and S bits of the Flag register. INR and DCR can also be used with M (the
byte whose address is stored in HL). The Z and S flags will be affected by
these commands also, but the C flag will not. There are also INX and DCX
commands for incrementing and decrementing the double registers (HL,
BC, DE, and SP). These INX and DCX steps do nor affect any of the flags in
the status register. As we’ll see later, this is something that can be a nuisance,
but we can get around it.

The logic commands ANA, ORA, XRA always operate on the byte which
is stored in the accumulator, and the result of the operation is also left in the
accumulator. For example, suppose the accumulator contains the byte
3EH, which in binary is 00111110, and that the C register contains the byte
ABH, binary 10101011. The result of ANA C will therefore be the AND of
3EH and ABH which is 2AH, binary 00101010, and this number will be
stored in the accumulator. Look back to Chapter 1 if you have forgotten
how the AND action works. The OR and XOR actions use the registers in
the same way, with command words ORA and XRA. This time, I've used an
example which uses register addressing rather than memory addressing, but
all of these commands can make use of the whole range of addressing
methods.

The rotate action

The effects of the 8080’s rotate commands, with their assembly language
mnemonics, are shown in Figure 4.1. The Z80 allows a range of shift

42 Introducing Amstrad CP/M Assembly Language

‘7 0 Carry
RAR

Accumulator

Carryd 7]

RLC

Accumulator

B
L4

Carry 7 0
¢ RAL

Accumulator

7 @ |Carry
— RRC

Accumulator

Figure 4.1 The 8080 rotate instructions.

L(Dl Q)l 1] 11@[1I¢[ﬂ Hex 35 Denary 53
- left shift

L®T1l 1—L¢| 1[01 Im Hex 6A Denary 106

[oT 1 To]1]1]e]1]0] Hexsapenaryop
[oTo[1To]1]1]0]1] Hex2pDenaryss

Figure 4.2 The effect of a shift on a number. This is also the effect of RAL and
RAR when the carry is cleared before each rotation step.

commands, but these were not implemented on the 8080, which uses only
rotation. The difference is that almost every type of Z80 shift results in a
register losing one of its stored bits (the one at the end which is shifted out)
and gaining a zero at the opposite end. The carry bit is used as a ninth bit of
the accumulator in all of the Z80 shifts. The shift action can be carried out on
the accumulator, on a byte in any of the other eight-bit general-purpose
registers, or on a byte that is stored in the memory and addressed by (HL).
The effect of a shift on a binary number stored in the register is to multiply
the number by two if the shift is left, or to divide it by two if the shift is right
(Figure 4.2). A rotation, by contrast, always keeps the same bits stored in the

Register Actions 43

register, but the positions of the bits are changed. The 8080 has two
directions of rotation, left and right, and two ways of using the carry flag - as
part of the rotation or not. There are four possible rotate commands in all,
of which you are likely to use no more than two in the course of most of your
programs. All of the rotations are carried out exclusively in the
accumulator.

The CMP (compare) instruction is a particularly useful one which
appears in almost every program. The command applies only to a byte
stored in the accumulator. It can use three of the standard memory
addressing methods, and its effect is to compare the byte copied from the
memory with the byte already present and stored in the accumulator.
Compare in this respect means that the byte copied from memory is
subtracted from the byte in the accumulator. The difference between this
instruction and a true subtraction is that the result is not stored anywhere!
The result of the subtraction is used to set flags, but nothing else, and the
byte in the accumulator is unchanged. For example, suppose the
accumulator contained the byte 4FH, and we happen to have the same size
of byte stored at an address 727FH which is held in the HL register pair. If
we use the command:

CMPM

then the zero flag in the F register will be set (to 1), but the byte in the
accumulator will still be 4FH, and the byte in the memory will still be 4FH.
A subtraction would have left the content of the accumulator equal to zero.

Why should this be important? Well, suppose you want a program to do
one thing if the ‘Y’ key is pressed, and something different if the ‘N’ key is
pressed. If you arrange for the machine code program to store into the
accumulator the ASCII code for the key that was pressed, you can compare
it. By comparing it with 4EH (the ASCII code for ‘N’), we can find if the ‘N’
key was pressed. If it was, the zero flag will be set. If not, we can test again.
By comparing with 59H, we can find if the ‘Y’ key was pressed - once again,
this would cause the zero flag to be set. If neither of these comparisons
caused the zero flagto be set, we know that neither the ‘Y’ nor the ‘N’ key was
pressed, and we can go back and try again. If it looks very much like the
action you can get with the INKEYS loop in BASIC, you’re right - it is.

Finally, we have the jump group of actions. These, as the name suggests,
allow the flags in the F register to be tested, and will make the program jump
to a new address if a flag was set. Which flag? That depends which jump test
instruction you use, because there’s a different one for each flag, and for
each state of a flag. For example, consider the two tests whose mnemonics
are JZ nnnn and JNZ nnnn. JZ nnnn means ‘if zero flag set, then jump to
address nnnn’. As this suggests, it will cause a jump if the result of a
subtraction or comparison is zero. Its ‘opposite number’, JNZ nnnn means
‘if the zero flag is not set, then jump to address nnnn’. There are, therefore,
two branch instructions which test the zero flag, but in opposite ways. The

44 Introducing Amstrad CP/M Assembly Language

Mnemonic Effect

JCa Jump to address ‘a’ if carry flag set.

JM a Jump to address ‘@’ if sign flag indicates negative.
JMP a Jump to address ‘a’ unconditionally.

JNC a Jump to address ‘a’ if carry flag not set.

JNZ a Jump to address ‘@’ if zero flag clear.

JPE a Jump to address ‘@’ if parity even.

JPO a Jump to address ‘a’ if parity odd.

JZ a Jump to address ‘@’ if zero flag set.

PCHL Jump unconditionally to address held in HL.

There is one difference between the 8080 chip and the Z80 chip as regards the
use of flags. The P flag is used by the 8080 only to indicate parity, but the Z80
uses it also to indicate an overflow in arithmetic. If you are writing programs
which need to use this flag, you should make sure that it is being set only by
the action that you want.

Figure 4.3 The complete list of 8080 jump instructions. The Z80 uses an
additional set of ‘jump-relative’ instructions.

same sort of thing goes for most of the other flags. There are two jump
instructions which make no test of flags, and these are called the
unconditional jumps. One of them is JMP nnnn, and the other is PCHL,
which will take a jump to the address that is held in the HL register pair.

The complete list of all the available jump instructions is shown in Figure
4.3. Many of these are instructions that you’ll probably never use, and the
really important ones use the zero, carry and negative flags. The Z80 allows
a larger range of jumps, and in particular, a type known as relative jumps.
These allow a change of address by up to 127 steps forward or back from the
address at which the jump is taken, and they have considerable advantages
for writing ‘position-independent’ code. This means that it’s possible to
write machine code that can be placed anywhere in memory and will run,
unlike CP/M, which must be placed in the addresses which start at 0100H.
Since we are concerned purely with CP/M in this book, we shan’t waste any
time regretting the relative jumps.

Interacting with the CPC6128 computer

The time has come at last to start some very elementary practical machine
code programming of your CPC6128 and PCW 8256. This is not simply a
matter of typing the assembly language lines as if they were lines of BASIC.
Unless you happen to have an assembler program in operation, CP/M will

Register Actions 45

simply give you ‘7 messages when you try to type these program
instructions. Since we want to start on a small scale, we'll forget about large-
scale assemblers at the moment, and make some more use of that very
valuable utility, SID. Make sure that you have a copy of a disc formatted as
a CP/M System disc, unprotected, with SID in place. What we need now is
a piece of memory that is safely roped off for our use only, one that won’t be
used for any other purpose by the computer. This is comparatively simple
with the aid of SID. As you know, SID loads ininitially at the usual address
of 0100H, but then immediately ‘relocates’ itself higher in the memory,
beyond the end of the TPA, and taking the place of the CCP. This allows
space for another program to be loaded into 0100 using the E command of
SID, or if the other filename is used following SID when SID is called. The
relocation of SID leaves the bytes of the original copy in the memory,
however, and we need to clear this so that we can see what we are doing in
the memory, without the complication of trying to figure out which bytes we
have put in, and which are left over from SID’s brief stay. What we shall do
to create a convenient piece of memory, then, is make a blank program,
consisting only of zeros, which will occupy memory addresses 0100 to O1FF.
This is a comparatively tiny piece of memory, but it will be quite enough for
all our early efforts. As it happens, the simplest way of clearing this space so
that we can use it over and over again is to make a file of it. We start by
loading SID in the usual way, and then looking at what’s in memory by
using d0100. Now type:

F0100,01FF,0

and press RETURN, which will have the effect of making every byte stored
from 0100 to O1FF a zero. This clears the piece of memory that we want.
Now make this into a disc file that you can load again by typing:

WSPACE.COM,0100,01FF

and press RETURN again. Now you will have a blank file called
SPACE.COM on the disc. Because this is a .COM file, it will load into the
correct part of memory when you call it with SID, and it also starts at the
correct address for creating CP/M programs. Now leave SID, and use DIR
to check that you have the SPACE.COM file on the disc. It’s also a good
idea to remove the disc, switch off, then on again, and check that you can
boot up CP/M, then SID, and then SPACE.COM. You can check that you
have the spaces present by using the D command of SID.

Having protected a space in the memory so that we can store the bytes of a
program, the other problem is how to place the starting address for your
program into the program counter of the 8080. Fortunately, the use of SID
along with this blank space does it all for you. Since the blank space starts at
0100, and SID will allow you to put code into it, all the needs fora CP/M
program are fulfilled, but you now have to ensure that your machine code
program will stop in an orderly way. Nothing that we have done so far will

46 Introducing Amstrad CP/M Assembly Language

indicate to the Z80 of the CPC6128 computer where your program ends. As
a result, the Z80 could continue to read bytes after the end of your program,
until it encounters some byte which causes a ‘crash’. This might, for
example, be a byte which causes an endless loop. Some programmers doubt
if there are any bytes which do notr cause an endless loop in these
circumstances! To return correctly to the CP/M operating system of the
CPC6128 computer, you need to end each machine code program with a
JMP 0000 instruction. This will allow a return to CP/M without upsetting
anything. For all our early efforts, however, we don’t want to return to the
main part of CP/M. The reason is simply that we shall want to find out what
the program has done, and for that we need SID. We need to end our first set
of programs, then, with a return to SID rather than to the A> prompt of
CP/M. To do this, we must end each program with the command RST 6.
Most other versions of CP/M on other machines use RST 7 for this, but for
your Amstrad is has to be RST 6. Later on, we’ll look at other ways of
returning, not all of which can be used with equal certainty of success unless
we exercise a little care along with them.

When we make use of SID for programming and for checking programs,
we are relieved of several worries about what our program does to any other
CP/M program which may be in the memory. If, for example, we were
‘patching’ (adding a chunk of code to an existing program) we would have to
take a great deal of care about what our program did. If, for example, our
program used the A and BC registers, it would replace anything that
happened to be stored in these registers by the main program. Unless we
replaced that data after running our piece of program, the results would be,
at the least, unfortunate. One way to deal with this is to place such essential
quantities into a part of the RAM memory called the stack. This,
incidentally, is another good reason for being careful about where you place
your machine code in the memory. If you wipe out the stack, neither CP/M
nor the CPC6128 computer will like it! When you use SID for running small
pieces of program, however, and end with the RST 6 command, all of this
‘housekeeping’ is taken care of for you. If, however, you use a piece of
program for patching, or even by itself, then you may have to attend to these
salvage operations for yourself as part of your machine code program. This
is rather more advanced programming than we want to get into at this stage,
however.

Practical programs at last

With all of these preliminaries out of the way, we can at last start on some
programs which are very simple, but which are intended to make you
" familiar with the way in which programs are placed into the memory of the
CPC6128 and PCW 8256. You will also gain some experience in writing
assembly language and placing it into memory with SID, and in how a

Register Actions 47

machine code program can be run.

We'll start with the simplest possible example - a program which just
places a byte into the memory. As written on paper in assembly language, it
reads:

ORG 0100 ;start placing bytes here
MVI A,53 ;place hex 53 in accumulator
STA 0120 ;store it at 0120

RST 6 ;2o back to SID

The first line contains a mnemonic, ORG, which you haven’t seen before. It
isn’t part of the instructions of the 8080 or Z80, but it is an instruction to the
assembler, which in this case is you! ORG is short for origin, and it’s a
reminder that this is the first address that will be used for your program.
We’ve chosen to use the start address for CP/M here, the address which you
would use if you were writing a program that would exist by itself. As often
as not, though, you will be adding to an existing program, and so using quite
different addresses. When, later in this book, you start to program using an
editor and separate assembler, this line can be typed and the assembler will
then automatically allocate the bytes of the program to the memory starting
at this address. As it is, with assembly being done by SID, the line is not
typed, and it simply acts as a reminder of what addresses to use. In
particular, you have to remember to create the SPACE.COM file in order to
rope off the piece of memory from 0100 to 01FF which we shall partly use.
Note the comments which follow the semicolons. The semicolon in
assembly language is used in the same way as a REM in BASIC. Whatever
follows the semicolon is just a comment which the assembler ignores, but
which the programmer may find useful. For the moment, keep these
comments on paper only, because there is no point in typing them into SID’s
assembler.

Now we need to look at what the program is doing. The first real
instruction is to load the number #53 into the accumulator. This uses
immediate addressing, so the number #53 will be placed by the assembler
immediately following the command code. The next line commands the
byte in the accumulator (now #53) to be stored at address 0120. This is an
address in hex, remember, and is well above the few addresses that we shall
use for the program. Obviously, we wouldn’t normally want to use an
address which was also going to be used by the bytes of the program. This
instruction uses direct addressing. Finally, the program ends with the RST 6
instruction, essential for ensuring that life with SID continues normally
after our program ends.

The next step is to put this lot into memory as code. To do this, we use the
assembler command of SID. With the # prompt of SID showing on the
screen, type A0100, and press RETURN. The A means assemble, and the
address which follows is our origin address at which we want assembly to
start. When this command is obeyed, SID shows the starting address of

48 Introducing Amstrad CP/M Assembly Language

‘alS jo puewwod g 3y} Aq pajeanal ‘Alowaw ul s8lAq papod 8y ¢t 94nbiy

Terettrccct 0P OQ 00 G2 00 00 0D 00 OO OO OO0 02 O 00 0P 08 :P4I@
sreetettctc 00 00 B2 DO 22 00 00 20 02 00 00 B0 00 A2 P2 20 PYIE
R R E 20 02 OC 00 B2 00 PV 20 O P PG OO GO PO 00 O 8610
Trrettscctt 3R 20 B2 OC DG P2 AC O 02 00 O0 OC 23 G2 02 B@ 0813
Trtetesctccs 00 20 27 D2 20 00 GZ OC OO 92 0P 00 A0 G0 22 0@ G168
Ttetttttccc 23 00 0D DO 00 O 02 20 GO 02 UD 00 Q2 P2 IE 00 @IIe
srecretccct R 2D 20 00 P2 00 00 0@ D2 20 G2 P2 20 0D 06 0@ 0S10
Trrertttttcc R 0P 00 00 02 00 00 O 20 D C0 OO0 Q2 B¢ OB 22 QIO

Tttt g 90 00 02 00 OC 0P O@ 0@ PG 20 OO 00 OO0 O 00 ‘0II0
..... """ 0P 00 00 02 00 PP OO VR ©C O OO B0 0@ 03 OO O :ZTT1O
..... "ttt 2P 00 G0 00 00 DO @2 TG @0 @GP C0 02 0@ 2@ O0 TP 011
"tttctt ZS< 00 00 B0 00 02 00 02 @R OO 88 L3 1@ @Z I £S5 3¢ 0010

Register Actions 49

0100, and you can then type the first instruction of the program, MVI A,53
and then press RETURN. All you’ll see is that SID takes a new line, and
shows the address 0102. You can now type the second instruction, and SID
will show the next free address 0105. You type the RST 6 into this one, and
SID shows 0106. At this point, pressing RETURN without typing anything
will cause SID to return to its # prompt, to await another order. The address
numbers that appear at the left-hand side are the address for the next free
memory space. The first instruction takes two bytes, in addresses 0100 and
0101, so the next free space is 0102, and so on. You can now take a look at
the code in the memory by using D0100 to examine a block of memory from
0100 onwards, and you’ll see a display rather like the example in Figure 4.4.

The next step is to run the program and see if it does what it should. Since
it will return to SID after running, it should be safe, but it’s better to record
any program of this kind before you make any attempt to run it. To record
this, you use the W command of SID to record the whole block of memory.
By typing WTEST,0100,01FF, and RETURN, the block of memory will be
recorded under the filename TEST (obviously you can use whatever
filename you like). This ensures that the program will be available for
correction if by any chance something goes wrong. You can now run the
program by using the G for go command. Type G0100 and SID will execute
your program. The message which appears on the screen will be *0105,
marking the place where the RST 6 command was put, the end of the
program. You can now use D0100 to see that the byte S3H has been put into
memory address 0120.

The next thing to try is a single step of the program. This is a SID facility
that we normally use when a program is misbehaving, but it’s better to get
the hang of using it on a program that is working correctly. Like practically
everything else in CP/M, it isn’t as straightforward as it looks, and this is a
good time to start sorting out its peculiarities. Single stepping means that
you trace the action of the program one step at a time, using the T command
of SID. You can’t just rush into this, though. The T command starts its work
from whatever address is in the program counter. If you have just run the
program, the PC will be at address 0105, the point at which the program
ended with a return to SID. To check this, type XP and RETURN. The X
means examine, and the P means the PC. If the address which appears is
0105, you can change it back to 0100 simply by typing 0100 and then
RETURN. Once you have 0100 in the program counter, you can press T to
make the first instruction of the program run. Pressing T again will give the
next step, and so on. You cannot step beyond address 0105, however, where
the RST 6 has been placed, because T will not dive into the depths of SID in
this way!

The sort of lines that you will see on the screen by using T are illustrated in
Figure 4.5. For each line, you get a display of flags, registers, and
instruction, and underneath this line, the address at which the next
instruction starts. The flags appear at the left-hand side. The example

50 /Introducing Amstrad CP/M Assembly Language

¥]
n ™
»~ " ~
48) L8]
4 <L [
> =~ 113]
) n x
= ™ 0
8 & &
S 8 @
i It ?
Q. 0. L
ul W]
U3 n g:;
i 2
'8 L. L.
il il i
o O] D)
=]] 8
]]]
4 L Lol
=]] 9
il I I
I I I
'] N N
=]]
4 4 . ovd
& = -]
)l Il Il
& Q a
n 'p]
E 1< g
N N
Il il Il
1] 4] 7]
[I
(Ip] n 'I.I'J;
I Il Il
< < q
|
™ N l u)
]] (]
- 4 |
8+ 1 84+ 1 8
% #* % #* %*

Figure 4.5 The information you get from the single-stepping T command of
SID.

program does not affect flags, so nothing significant will appear here. Of the
registers, only A and P are of importance to us at present, but note that the
other registers are being used by SID. The instruction that has been carried
out in the line appears at the right-hand side. This trace facility is very useful,
and it allows many variations, such as tracing several steps. Try, for
example, setting the PC back to 0100, and then typing T3 to trace all three
lines of the program.

Now this first example of machine code isn’t an ambitious piece of work;
it does no more than a POKE would do in BASIC, but it’s a start. The main
thing at this point is to get used to the ways in which you write assembly

Register Actions 51

@188 LXI H,0120
8183 MVI M,AS
8102 MOV A,M
2106 INX

@107 RAL

@188 MOV M,A
81089 RST @&

Figure 4.6 An assembly language program which loads a byte, rotates it, and
saves it in memory again.

language and how you place it into memory, run it, and trace it. Now let’s try
something a lot more ambitious in terms of our use of machine code -
though the example is simple enough. Figure 4.6 shows the assembly
language version of the program. What we are going to do is load a byte into
the accumulator, rotate it one place left, and then put it into memory at an
address one step higher than the address from which we took it. This looks
like a good opportunity to show an example of addressing with the HL
register pair, so we shall start by placing an address into the HL registers.
This is the LXI H,0120 step, and its effect will be to place the address #0120
into the HL register pair. The next line, MVI M,A5 means that the memory
at address 0120 (held in HL) is to be loaded immediately with the byte AS,
which in binary is 10100101. The next step is to load the accumulator from
this address, using MOV A, M. Normally, we would just have loaded A5
directly into the A register, but I've chosen this way to illustrate the use of the
HL register pair. The next step is INX H, incrementing the address stored in
HL to 0121, because this is where we shall put the byte after processing. Now
comes the processing, in the shape of RAL, a rotate left, followed by a
MOV M,A to put the result back into memory at the address held in HL,
which is now 0121. We end, as before, with the RST 6 instruction.

Now we can assemble all this into code form, using SID in the same way
as before. Once this has been done, ensure that the PC is at 0100, and trace
your way through it. If you have started with everything fresh, the first steps
should show no flags set, but you will start to see flags being set as you work
your way through. The one to look for is the C flag, which appears at the
extreme left-hand side when the rotation is carried out. This is because the
byte that we chose to rotate started with a 1, and this 1 has been shifted into
the carry flag position, setting the flag. Otherwise, the effect of RAL is just as
you would expect for a left shift. If you run the program again, however by
putting the PC back to 0100 and tracing again, you’ll find a different effect!
This is because the carry flag is still set, and it is shifted by RAL into the least
significant position of the byte, making the result one more than it was the
previous time. If you want to use the RAL as a simple shift, then you need to
clear the carry bit before you start by using the sequence STC CMC (set
carry, then complement carry). You can try putting different numbers into
this program, and you will find that if the carry flag is clear, and the number

52 Introducing Amstrad CP/M Assembly Language

is less than 128, then the action of the shift is to double the value of the
number. If a carry bit is present, however, the answer will be one unit more.
The answers will be correct for numbers up to 127 (denary), which is 7F hex,
but from 128 up, hex 80 up, you will get incorrect answers because the
accumulator can hold only one byte. If you still don’t see why, write the
numbers in eight-bit binary, and then you’ll see.

More examples

At this point, it’s important to try a lot of simple programs to make sure that
you are familiar with these methods. By the time you have finished this
chapter, you will have a much better idea of how to approach machine code
from a practical point of view, and you will be able to make up more
exercises for yourself. The next chapter will then help you with the design of
machine code programs, which is the most difficult part of all. After that, it’s
all downhill!

Getting back to examples, it’s time to do a little arithmetic with a register-
indirect load. Figure 4.7 shows the assembly language version, which starts
by loading an address, #0120, into the HL register pair just as we did
previously. The next step is load the accumulator from this address, using
MOV A,M. What we want to do is to load the byte that is stored at address
#0120 into the accumulator. Having done that, the next step is INX H. This
will increment the address to #0121. With the HL address incremented, the
byte in the new address #0121 is added to the byte in the accumulator. The
address is incremented again, and another byte is added to the accumulator.
The accumulator, remember, will always contain the result of the addition,
so it is accumulating the numbers for us. Finally, the address is incremented
again and the accumulator is loaded into memory at #0123, after which the
program returns.

Type this in, using SID, and check that it is correct. If you have scrolled it
off the screen, you can get a new version by typing L0100,101A, which is a
command for a disassembly. Before you can run the program, you need to

2180 LXI H,0120
2103 MOV A,M
@14 INX H

®105 ADD M

@106 INX H

@187 ADD M

@108 INX H

@109 MOV M,A
@194 RST 06

Figure 4.7 An assembly language program which uses register-indirect
loading to perform some additions.

Register Actions 53

put in the numbers, and this can be done by using the S command of SID.
Type S0120, and you will see the address 0120 appear on the left-hand side
of the next line, with the content of this address, 00, next to it. Now type a
number to put in here, say 15. Remember that this, like all other numbers in
this system, is in hex. When you press RETURN, the number will be
entered, and the next address is displayed, ready for another number. Try 12
here, and 27 in the third address. When you have entered these three
numbers, press ESC and RETURN to escape from the number entry
routine. You can now use SID to single step its way through the program,
watching the numbers accumulate in the accumulator. As an alternative,
you can just use G0100, and watch it all happen a lot faster. The end result
will be the same - if you have used the suggested numbers it will give 4EH in
memory address 0123. You can try changing the numbers for yourself, but
remember that if the sum exceeds FF hex (255 denary), then what is printed
will be only the remainder, the lowest eight bits, remaining in the
accumulator. If the sum is 12CH (300 denary), for example, then what
remains will be 2CH. If the sum is 2BCH, then what remains will be BCH.

For a last example in this chapter, let’s look at something a little less
numerical. You can never get very far away from numbers when you are
dealing with machine code, but at least this time we’re not doing any
arithmetic. Figure 4.8 shows the assembly language version of what we’re
doing in the program. The HL register pair is loaded once again with the
address #0120. This address will be used to store an ASCII code number for
a letter. The accumulator is loaded from this address, and the HL address is
incremented. The accumulator is then ORd with #20. The principle here is
that if the ASCII code for an upper-case (capital) letter is ORd with #20, the
result is the ASCII code for the same letter in lower-case. The same result
can be achieved by adding #20, but this seems a good chance to see the OR
action working. The next line of the assembly language program stores the
accumulator content back into memory at address #0121 and we return to
SID. Now place a byte such as 56, the ASCII code for V, in the memory at
0120, run the program, and look at the memory contents using D0100.
You’ll see on the ASCII printouts at the right-hand side that V and v are
placed next to each other, indicating that the conversion has been effective.
The next thing to do is make a loop of this action - but that’s going too far
for the moment!

0100 LXI H,0120
0103 MOV A, M
0104 INX H

0105 ORI 20
0107 MOV NM,A
0108 RST 06

Figure 4.8 An assembly language program for converting from upper-case to
lower-case letters.

Chapter Five
Taking a Bigger Byte

The simple programs that we looked at in Chapter 4 don’t do much, though
they are useful as practice in the way that CP/M assembly language
programs are written. Practising assembly language writing, seeing it
converted into machine code, and tracing its action is essential at this stage,
because you can more easily find if you are making a mistake when the
programs are so simple. It’s not so easy to pick up a mistake in a long
assembly language program, particularly when you are still struggling to
learn the language! Most beginners’ difficulties arise, oddly enough, because
assembly language is so simple, rather than because it is difficult. Because
assembly language is simple, you need a large number of instruction steps to
achieve anything useful, and when a program contains a large number of
instruction steps, it’s more difficult to plan. The most difficult part of that
planning is breaking down what you want to do into a set of steps that can be
tackled by assembly language instructions. For this part of the planning,
flowcharts are the traditional method of finding your way around. I never
think that flowcharts are well suited for planning BASIC programs, but
they come more into their own for planning assembly language.

Flowcharts

Flowcharts are to programs that block diagrams are to hardware - they
show what is to be done (or attempted) without going into any more detail
than is needed. A flowchart consists of a set of shapes, with each shape being
the symbol for a type of action. Figure 5.1 shows some of the most
important flowchart shapes for our purposes (taken from the British
Standard set of flowchart shapes). These are the terminator (start or stop),
the input/output, the process (or action) and the decision steps. Inside the
shapes, or next to them, we can write brief notes of the action we want, but
once again without details.

A simple example is always the best way of showing how a flowchart is
used. Suppose you want an assembly language program that takes the
ASCII code for a letter from an address in memory, sets bit 7, and then
replaces the number. Setting bit 7 (the most significant bit) is equivalent to
adding 128 to the ASCII code, and will convert a letter code into a ‘special
character’ code, or a graphics code. A flowchart for this action is shown in

Taking a Bigger Byte 55

START or END + PATH
PROCESS PATHS JOIN
DECISION INPUT or OUTPUT

Figure 5.1 The main flowchart shapes.

Figure 5.2. The first terminator is ‘START’, because every program or piece
of program has to start somewhere. The arrowed line shows that this leads
to the first ‘input/output’ block, which is labelled ‘READ CODE’. This
describes what we want to do — get the code number for a character that is
stored in a memory address. We don’t know what the address is, nor does it

READ CODE

SET BIT 7

REPLACE
CODE

END

Figure 5.2 A flowchart for a program which will read a byte, set bit 7, and store
the byte again.

56 Introducing Amstrad CP/M Assembly Language

matter at this point. After getting the character, the arrow points to the next
action, setting bit 7 of the ASCII code number. This is represented in the
flowchart by an ‘action’ box, with the actual action written inside. Next, as
the arrow shows, the altered code number is replaced in the memory at the
same address. The ‘END’ terminator then reminds us that this is the end of
this piece of program - it’s not an endless loop.

This is a very simple flowchart, but it is enough to illustrate what I mean.
The arrows are very important, because they show the direction of ‘flow’
(hence the name flowchart) of the program. You don’t need to be reminded
about the order of actions in an example as simple as this, but as your
programs get more adventurous these arrows become more important. Note
too that the descriptions are fairly general ones — don’t ever put assembly
language instructions inside the boxes of your flowchart. A flowchart
should be written so that it will show anyone who looks at it what is going
on. It should never be something that only the designer of the program can
understand and use, and which just confuses anyone else. A good flowchart,
in fact, is one that could be used by any programmer to write a program in
any variety of assembly language — or in any other computer ‘language’,
such as BASIC, C, Pascal and so on. Many flowcharts, alas, are constructed
after the program has been written (usually by a great deal of trial and error)
in the hope that they will make the action clearer. They don’t, and you
wouldn’t do that, would you?

Once you have a flowchart, you can check that it will do what you want by
going over it very carefully. In such a simple example there isn’t much to do,
because the only thing that needs to be checked is that the order of actions is
correct. In fact, if you write your flowcharts well, this is about all you ever
have to do! That’s because you will write a program by first drawing up a
flowchart of the main actions, and there are surprisingly few main actions in
a assembly language program. Most programs, in fact, have only three
boxes in their first flowcharts, an input, a process, and an output. Once you
have decided on this outline, you then draw separate flowcharts for the
separate sections. Each box of these flowcharts might then need a flowchart
to itself, and so on until you have a set of steps that can easily be put into
assembly language. This shouldn’t come as a surprise to you if you have
written programs in BASIC, because if you read the right books (mine, 1
hope) about CPC6128 BASIC, you will already know how to plan a
program by breaking it into smaller and smaller pieces. The main difference
about assembly language programs is that the pieces are very much smaller!

Warnier-Orr diagrams

A lot of programmers never get on well with flowcharts, and have turned to
a different method of program design. The title, Warnier-Orr diagram
comes from the inventor Warnier, and the populariser Orr. One of the

Taking a Bigger Byte 57

advantages of this method is that you don’t, unless you are writing for a
professional ‘magazine, have to stick too closely to any set method. A
Warnier-Orr diagram, despite its name, relies on words to describe the
program plan rather than symbols. Its great advantage compared with
flowcharts is that it is better suited to the idea that a program is designed
‘top-down’, planning outlines first, and then filling in detail later.

START $ load HL

in A82A
READ CODE {use o
SET BIT 7

to A82A

REPLACE CODE {use (HL)

END {RET to BASIC

Figure 5.3 A simplified version of a Warnier-Orr diagram for the program
which sets bit 7.

Figure 5.3 shows a very simple example of a form of Warnier-Orr
diagram for the same problem we looked at in Figure 5.2. This time, the
main parts of the process are shown written down the left-hand side. Curly
brackets are then used to show how each action is broken down, or to give
more information. I should stress that this is a simplified adaptation of the
Warnier-Orr method; professors and other purists should look away. It suits
me, though, and it may suit you too. In a simple program plan like this,
there’s no need to look for any greater detail, but we could, if we needed to,
use further sets of curly brackets for more detail. In this way, the diagram
grows from the left-hand side of the paper to the right-hand side, with the
finest detail on the right-hand side. The great advantages of this method are
that you can see both the outline plan and the detail on one sheet of paper.
From now on, I shall illustrate this method of planning for the example
programs in this book. If you are happier with flowcharts, then all you need
do is draw the flowchart shapes alongside the notes.

Having shown the plan of this program in two different ways, we had
better look at how to carry it out. If we follow the outline strictly, then we
arrive at Figure 5.4. This puts the address #0120 into HL as usual, then loads
the accumulator from this address, using MOV A,M. Setting the number 7

58 Introducing Amstrad CP/M Assembly Language

2108 LXI H,0120
0103 MOV A,M
2124 ORI 80
2106 MOV M,A
2187 RST @b

Figure 5.4 Implementing the plan in assembly language.

bit is done by the ORI 80 command, and the byte is then put back into
memory using MOV M, A. This time, the byte is put back into the same piece
of memory, because no incrementing actions have been used on HL. If you
put a number such as 4C into address 0120, then after running the program,
the number will be CC, with bit 7 set. This type of action can be done in a
different way with the Z80, using a SET command which is not available in
the 8080 command set.

Loop back in hope

The examples which we have looked at so far are of linear programs, not of
loops. Now it’s very seldom that we make much use of linear assembly
language programs, as distinct from small sections, because loops are much
more common. A loop action in BASIC can be very slow, and it is only in
looping programs that you can really appreciate the speed of assembly
language. This looks like a good opportunity to get in an introduction to
looping. If you have done anything more than the most elementary BASIC
programming, you will know what a loop involves. A loop exists when a
piece of program can be repeated over and over again until some test
succeeds. In BASIC, you can cause a loop to happen by using a line which
might read, for example:

200 IF A=0 THEN GOTO 100

This contains a test (is A=07?), and if the test succeeds (yes, A is 0), then the
program goes back to line 100 and repeats all the steps from there to line 200
again. That sort of loop in BASIC corresponds very closely to how we create
a loop in assembly language. Instead of using line numbers, however, we use
address numbers. Instead of testing a variable called ‘A’, we shall test the
contents of a register, which in most cases is the A register.

Let’s start the proper way with a planning diagram. Figure 5.5 shows how
this might look. The first step is to load a register. The next step is to
decrement the number which is in the register. The third step is to test what
remains. If it is not zero, then we must return to the decrement stage. I have
used a ‘label letter’, A, to show where the loop returns. This is not a standard
Warnier-Orr marking but it’s very convenient because it marks where the
loop begins, something that the use of GOTO in BASIC lacks. Having put
down this very simple outline, then, we use the curly brackets to enlarge on

Taking a Bigger Byte 59

START
LOAD REGISTER ;
A: DECREMENT 3
IF NOT ZERO, GOTO A guse JNZ address
END {

FFH into B

Figure 5.5 A plan for a one-byte counting loop.

it. At the loading stage, we’ll place the byte #FF into register B. This is the
largest size of single byte that we can have. The decrement step will then be
done using DCR B, and the test will use JNZ, and will return to the point A,
the decrement step. :

The action, then, will be that the B register is loaded immediately with the
byte #FF, and the byte in this B register is then tested to see if it is zero. If it is,
we return to SID. If it isn’t (which means that the countdown is not
complete), then we decrement and try again. Now we have to put this into
assembly language form - and that’s going to introduce some new items to
you. Knowing what we know so far, we can write this in assembly language
as:

MVI B,FF
Loop: DCR B

JNZ,Loop

RST 6

and this would carry out the action we want. We can’t type it in this form
using SID, however. Later, when we work with ED and ASM, we can use
labels in this way, but the very simple (and useful) assembler of SID doesn’t
allow such frills. For such small programs, it doesn’t matter. We know,
when we enter the program, that the address marked by Loop is 0102, and
the JNZ address must therefore use 0102.

Now it’s time to try out this looping business. Type the program into SID,
using the form shown in Figure 5.6. Following the JNZ step, we put the
address to which the program has to return, which we can see is 0102. This is
relatively easy when you are entering short programs, because the display
that SID lays on for you shows the addresses. For longer programs, it’s not
so easy to use, and we have other ways of writing really long programs.
Patience for the moment. Try this program, single stepping it for a few times
through the loop to show what is happening. Then try it at full speed, using
G0100. Now when you do this, you might get the impression that the
assembly language doesn’t seem to have a very noticeable advantage of
speed compared with a BASIC loop that counts down from 255 to zero.

60 Introducing Amstrad CP/M Assembly Language

21886 MVI B,FF
8182 DCR B
P13 JINZ 08182
8184 RST @6

Figure 5.6 The assembly language for a one-byte counting loop.

Both versions, in fact, deal with the count from 255 (hex #FF) to zero pretty
quickly, but in fact most of the time taken by both programs is due to
printing on the screen. The results are therefore misleading, and if we want
to see how fast machine code is compared with BASIC we must use much
longer counts, so that the time delays caused by actions like printing are not
so significant. First of all, though, we need to find out how to carry out a
longer count in assembly language.

A look at longer loops

The most obvious way of carrying out a longer countdown in assembly
language is to load one of the double registers and count that down.
Unfortunately, although we can decrement the double registers by using
DCX (with H, B, or D), the DCX action on a double register does nor affect
the flags in the status register, so we can’t use JNZ following DCX to loop
back until the count is finished. This lapse on the part of the designers can be
remedied with a little programming cunning. If we load the contents of one
half of a double register into A, and then OR with the other half, only one
condition will result in zero. That’s when both halves of the double register
contain zero. Suppose, for example, that we are counting down in BC (the
favourite for this action). If we carry out MOV A, B, then the accumulator
will be loaded from B. If we then ORA C, then if there is a | anywhere in
either A or C registers, there will be a [in the result (stored in A). Only if
both registers are zero will the result be zero. The point here is that a zero in
A after ORA C will set flags. We can therefore follow the ORA Cbya JNZ
to perform the looping action.

Time to look at it, in Figure 5.7. The first action is to load the BC register
pair with the number #FFFF, 65535 in denary. The label word ‘Loop’ in the
‘written’ version marks where the loop starts, and in this line the BC register
pair is decremented. The result is then tested by using MOV A,B and ORA
C, as described, and this is followed by JNZ LOOP to make the program
loop back if the count has not reached zero. The program returns to SID
after the end of the countdown. If you compare this for speed witha BASIC
countdown from 65536 to 0, you’ll notice a very marked difference between
the machine code version and the BASIC version. The machine code version
appears to end in about half a second - it’s still almost too fast to time. A
BASIC version takes about 73 seconds. In this example, then, assembly

Taking a Bigger Byte 61

@1@8@ LXI B,FFFF
@123 DCX B

2184 MOV A,B
@185 ORA C

2186 JINZ 0103
@189 RST 06

Figure 5.7 A counting program which uses a register pair, BC. This takes
considerably longer to execute.

language is roughly 146 times faster than BASIC! The advantage would be
less, about 64 times, if we could use integers for the BASIC loop. This
illustrates the sort of speed advantages that you can expect when dealing
with a program which is purely machine code.

Trying to time the assembly language version with a stopwatch is very
inaccurate because of the time it takes you to start and stop the watch. We
can find exactly how long a countdown in machine code takes, however.
The clock rate of the CPC6128 computer is given as 4.00 MHz. This means
4.00 million clock pulses pér second, so that the time between pulses is
approximately 0.25 millionths of a second. Now for each instruction, there
is a time which is measured in terms of the number of clock cycles. These
times are shown in detail in Appendix C, and Figure 5.8 shows how much
time is needed for each instruction in the machine code loop. Twenty-four
clock cycles, with each clock cycle taking 0.25 millionths of a second, gives
us a time of 6.0 millionths of a second for each loop, so that 65536 loops take
a time of 0.393 seconds, well under half a second. Counter loops like this can
be used to produce very precise time delays, because the clock rate is
controlled by a quartz crystal which is as precise as the one which would be
used in a modern watch or clock. These time delays are used to a
considerable extent in the ROM routines. The sound routines, BEEP, disc
input and output and printer routines, just to name a few, make use of

Command Time

DCX B 6
MOV AB 4
ORI C 4
JNZ addr 10

2

Since each clock cycle takes 0.25 microseconds, 24 clock cycles take
24X0.25=6 microseconds.
Time for 65536 loops = 65536 X 6/1000000 = 0.393216 seconds.

Figure 5.8 The times for each instruction can be summed to find how much
time is needed for each loop. Times are expressed in clock cycles.

62 Introducing Amstrad CP/M Assembly Language

precise timing to achieve their actions, and loops such as the ones used here
are the basis of that accuracy.

Time delays

One of the main uses for a countdown loop of the kind we have been testing
is for time delays. Even if we use a countdown from a double register,
however, the time delays we get are very short. For most practical purposes,
we would probably need rather longer delays. The alternative is a holding
loop of the ‘press any key’ type, but that’s something we’ll look at later. The
next step at the moment is to develop a more useful routine for time delays
of practical length. Since a countdown of the number FFFF in a double
register gives a delay of under half a second, we need to use another
countdown of this countdown to extend the time. This method will be more
useful if we can make it a fairly precise amount, say 0.1 seconds for each time
the double register countdown is used. To start with, we have to determine
what number we need in the BC register pair for a 0.1 second countdown.
Using the delay figures above, it works out at 16667 in denary, hex 411B.
What we need to do, then, is have an inner loop in which the number 41 1B
will be loaded in place and counted down, and an outer loop which will
repeat this action several times. If we use a single register for this action, then
the longest delay we can get is 255X 0.1 seconds, which is 25.5 seconds, long
enough for most purposes. If you need longer counts, then the outer loop
can use a double register in place of a single one.

The scheme for a ‘universal’ time delay is shown in Figure 5.9. The routine
starts by loading a delay byte into register E. Since the main time delay will
be 0.1 second, the number that is loaded into E should be ten times the delay,
in seconds, that you want. In this version, it has been represented by the
word DELY. Following this load, the BC registers are loaded with the
number 411B which will give a 0.1 second delay. This is exactly the same as
the routine we looked at previously, so we needn’t spend any more time with
it. Following this 0.1 second delay, the E register is decremented (which will
affect flags, since this is a single register) and tested with JNZ START. In

START
LOAD E WITH DELY

RUN DELAY ROUTINE
DECREMENT E j ,
REPEAT IF NOT ZERO

END

Figure 5.9 A plan for a ‘universal’ time delay.

Taking a Bigger Byte 63

2100 MVI E,14
2182 LXI B,411B
2195 DCX B

2106 MOV A,B
2107 ORA C

2188 JINZ ©18S
@i0E DCR E

818C JINZ @102
B1OF RST &

Figure 5.10 The assembly language for a two second delay, using the plan of
Figure 5.9.

this way, the inner loop is repeated for as many times as is needed to count
down the number DELY.

Figure 5.10 shows an example of the routine arranged for a two second
delay. The number loaded into register E is 14H, 20 denary, and the whole
routine takes only 16 bytes to store. Try single-stepping this one and you’ll
see the BC register pair being loaded and decremented. Once you have
convinced yourself that this part is working correctly, see what happens
when the BC register is empty. You don’t have to single-step it 16667 times in
order to see this happen! If, during the single-stepping, you type (when the
prompt appears) XB, then the number in the BC register pair will be
revealed. You can now alter this to 1 just by typing 0001 (or just 1, if you feel
lazy). Using T will give the next single step, but with the new contents of BC.
Now you can see what happens when BC is brought to zero, and the outer
loop is resumed, decrementing E. This action of altering what is stored in the
registers of the microprocessor is a very powerful way of checking the action
of a counting loop, or any point in a program where there is a test of register
contents like this. Any program that you develop should, if at all possible, be
tested in this way, because it takes less time in the long run than having to
reboot everything because of an error somewhere.

The routine is a useful sixteen-bytes worth if you need several time delays
in the course of a program, but how would you use it? In its present form you
would have to put the routine into memory wherever you needed it, but
there is an alternative. The alternative, as you will know if you have
programmed in BASIC, is the use of a subroutine. By converting this time
delay routine into subroutine form, we can put it in a fixed place, then call it
up and use it from any other part of a program. Before we can do this,
though, we need to know how to organise subroutines in assembly language.

Subroutine delay

A subroutine in assembly language, is any piece of routine which can be
written once and called from any part of a program. The subroutine is called

64 Introducing Amstrad CP/M Assembly Language

8160 ™MVI E,14
@102 CALL B1@B
2195 MVI E,32
@107 CALL @1@B
210A RST D6
@105 LXI B,411B
@10E DCX B
@10F MOV A,B
8110 ORA C
@111 JNZ @10E
@114 DCR E
@115 JNZ ©10B
?118 RET

Figure 5.17 The timer arranged as a subroutine which can be called when
needed.

by using the word CALL, followed by the starting address of the subroutine.
To make the subroutine return correctly, it must end with the instruction
word RET. The advantage of using subroutine form for a time delay is that
it allows the same routine to be used with different delays. Figure 5.11 shows
the subroutine form with a call from a ‘main’ program. The subroutine
contains all the steps of the routine with the exception of the loading of
register E, which is done in the calling program. Whenever E has been
loaded, the delay subroutine is called by using CALL 010B (in this example)
to run the time delay. The illustration uses two calls, one of two seconds and
one of five seconds, to give a total of seven seconds delay. In reality, there
would be other program items between the calls to the time delays, but I
want to avoid long-winded examples. One point you may need to remember
is that if register E is not loaded before this runs, and contains zero, the
routine will run for 256 cycles, giving a time delay of 25.6 seconds. This is
because decrementing zero in a register produces FF, and this will then be
counted down. Don’t panic, then, if you haven’t loaded E, and find the
cursor apparently stuck - it will all come right in about 25 seconds!
Another point that this raises is how we get quantities, like the number in
register E, to be used in a subroutine. The example shows one way, which is
to load E before the subroutine is called. This corresponds to the use of a
‘global variable’ in some programming languages. Sometimes, however,
you will want the subroutine to be much more self-contained, with all of the
registers loaded from inside the subroutine. This can be done if the byte
needed by this subroutine, to take an example, is stored in memory. The
subroutine can then load E from this memory address, perform the delay
routine, and then return. You arrange for different delays by arranging for
different numbers to be stored in this memory address. It looks more
clumsy, and you wouldn’t want to use it for short routines, but it can be an
advantage for longer programs. Another method, one that we’ll look at in
more detail later, is the use of the stack for holding and releasing quantities

Taking a Bigger Byte 65

that need to be passed to subroutines. For the moment, though, we need to
turn our attention to other aspects of subroutines and loops.

Chapter Six
CP/M Interactions

Other loops

Now that we have seen the speed of a machine code loop when it’s used as a
time delay we need to take a look at other applications of loops. One of the
most obvious applications of a loop is to screen operations, because the time
that BASIC needs to carry out screen actions can be quite limiting.
Consider, for example, a BASIC program which fills the screen with the
letter ‘A’, and which takes about six seconds. We could expect that a
machine code version of this program would take rather less time. The
problem is, how do we go about it?

The answer is important, because there is a way of goingabout all of these
things which is peculiar to CP/M, and which you must follow very carefully
if your programs are to be trouble-free. The whole principle of CP/M is that
routines are provided for all inputs and outputs, and they demand the use of
specified registers, plus a call to a special location in memory, #0005. If you
use D0000 to look at this piece of memory, you'll find that what is stored at
address 0005 is the set of bytes C3 00 DB, which is the code for JMP DBO00.
The address DBO0O is the start of a very important set of routines, called
BDOS, the basic disc operating system. ‘Basic’ in this sense has nothing to
do with the BASIC programming language. The important point about the
BDOS address is that all kinds of inputs and outputs can be achieved by
loading bytes into the C and E registers, then calling the address 0005, which
performs the jump to BDOS. Now if you were writing only for your
Amsirad machine, you could just as easily use CALL DBOO, cutting out the
JMP step. Unless, however, you are convinced that you’ll never use another
machine (a foolish belief, if you remember the CPC664 affair), it’s better to
use CALL 0005. The reason is that CALL 0005 will work on any CP/ M
system, which means on any machine that runs CP/M. This is the whole
point of using CP/M, that the programs can be made so that they will run on
any machine that uses the 8080, 8085, or Z80 microprocessors. The sooner
we get to grips with the use of BDOS, then, the better.

With all of that to digest, let’s plan a program which will fill the screen
with the letter ‘A’. Figure 6.1 shows the planning, with the outline, as usual,
on the left-hand side. We want to clear the screen, write 2000 ASCII codes
for ‘A’ to the screen, and then return to BASIC. The figure of 2000 comes
from the rows and columns that we use. There are 25 rows, each of 80

CP/M Interactions 67

START
CLEAR 3wdm1345

* 3use HL for count
WRITE# 41 E =41
2000 TIMES (C =2
CALL 005 3 decrement HL
return to * if not zero

END 3RST6

Figure 6.1 A plan for a program that will use machine code to fill the screen
with the letter ‘A’.

characters in the normal text screen and 25X 80 is 2000. In the CPC6128
only 24 rows are normally used, but the 25th row can be obtained, as the
manual shows. The next stage in planning shows more detail. All printing
on the screen uses a call to BDOS, with the number 2 placed in the C register,
and the byte which we want to put on the screen in the E register. The screen
will be cleared by using the form-feed codes of 1B 45. These codes are shown
in the Amstrad CPC6128 manual, in Chapter 7:15, and in Chapter 4, page 7
of the manual. The full code list allows a lot of control over the workings of
the CPC6128 from inside CP/ M, and it’s something that we shall come back
to. Getting back to the problem in hand, the action of placing letter ‘A’ on
the screen will be achieved by loading the E register with the number #41
(ASCII ‘A”), setting a counter to 1999, printing to the screen with CALL
0005, and then decrementing and testing the counter. If the counter has not
reached zero, the program returns to the point that is labelled *, the screen
print CALL. The further detail is then shown in the next set of brackets,
which shows that we need to use HL for counting, since C and E are in use.
The alternative method, using the stack, will be discussed later. Now we can
write the assembly language program.

Or should we? Never take anything for granted, especially when it
involves using a built-in subroutine for the first time. You see, we have
assumed so far that when we load up registers and call 0005, that everything
will be unchanged after the CALL has been done. Perhaps we should just try
things out, and see what happens. Figure 6.2 shows a simple load and call
arrangement which we can single-step to find what happens. The single-
stepping in this case has to be slightly differently arranged. If we set the PC
to 0200 and use T, then the stepping will go through all the steps of the
CALL 0005, and it will take a long time and be very puzzling. If we modify
the command to TW, however, SID traces only the main steps, and executes
the calls at normal speed. In this way, we see the result of a call without
having to go tediously through all its steps. Figure 6.3 shows the result, and

68 Introducing Amstrad CP/M Assembly Language

0100 MVI C,02
@182 MVI E,41
2104 CALL 0005
@107 RST 06

Figure 6.2 Trying out the effect of the CALL to 0005 on the registers.

the line to look at very closely is the one following the CALL 0005 step. This
shows that both the C and the E register contents have been changed by the
CALL action. In fact, the number in the C register after the call is the same
as the number that was in the E register before the call. Incidentally, the ‘A’
which appears following the CALL 0005 instruction in this listing is the

c,02
E,41
@041 D=FElé&6 H=0080 S=@0FC P=01187 RST 26é

@@ B=0082 D=1741 H=0088 S=00FC F=08104 CALL 20854

80 B=0841 D=174F H=0000 S=00FC F=0G100 MVI
——M-—— A=@00 B=0002Z D=174F H=00@8 S=80FC F=0102 MVI

-—M-—— A=00 B

——M— &
—M—— A
*RA187

Figure 6.3 Tracing the action with SID, showing how the registers are affected.

CP/M Interactions 69

result of the call being obeyed - the A is printed on the next available space.

What all this research (it sounds better than ‘messing about’) shows is that
using CALL 0005 will have an effect on registers, and we can’t be sure ifany
registers will escape. This makes it a dodgy business to try, for example, to
set up a counting loop which contains CALL 0005, because if the register
that keeps the count has its contents corrupted, then the count may never
end! The answer to these problems is to store the contents of registers in the
memory before using CALL 0005, and then restore the register contents
afterwards. This is required so often that special commands, and a specially
selected piece of memory, are used for the purpose. The piece of memory
that is reserved for this purpose is the stack.

The stack

The stack is part of the normal RAM memory of the computer, and the only
thing that makes it special is the fact that it is used in a special way. The
starting address of the stack is fixed unless you alter it by a command, and
the stack memory is from that address downwards. That doesn’t mean that
the stack will always be in the same place. While SID is running, for
example, the stack memory starts immediately below the start address of
CP/M, at #00FF. Other programs place the stack in other parts of the
memory, but whatever is done, the stack must take up a set of addresses that
will not be used for anything else. If SID used the stack to such an extent
that it altered the RST 6 address at 0030, for example, SID would crash. As
it happens, the way that SID is designed makes such intensive use of the
stack practically impossible, but this doesn’t mean that it will be impossible
to overfill this stack if you also make use of it. The starting position of the
stack can be moved by assembly language commands. For many purposes,
it may be useful to set up a stack address early onina program, but if you are
simply adding code to an existing program, you will make use of the stack
setting for that program, rather than set up a new stack position simply for
your piece of program. The position of the stack, in any case, must remain
fixed for the duration of a program. If you do anything to alter it during a
program, then this is guaranteed to cause a crash. When you work in
languages like BASIC, you can be prevented from doing anything like this,
because the program will stop with an error message if you have any
instruction which might cause the stack to be overwritten with other data. In
machine code, you have no such protection.

Our programs so far have used addresses of #0100 upwards, with SID
setting the stack to start at 00FF. The stack ‘grows downwards’, meaning
that as you store bytes on the stack, the next address that will be used is a
lower address. For example, if the stack address is #00FF and a pair of bytes
is stored, then the address changes to #00FD, two bytes lower. This address
for the next available place in the stack is held in a register of the Z80 which

70 Introducing Amstrad CP/M Assembly Language

is called the stack pointer. By loading this register with other values, we can
change the position of the stack. For your own programs, unless there is
some very pressing reason for shifting the stack pointer, leave it alone. The
stack pointer setting for SID can normally be used with no problems in your
machine code programs written using SID. When you start to write
programs that will not be run with SID in attendance, you may have to set
up a separate stack for use by that program.

Using the stack

You can make use of the stack in programs without having to worry about
where the stack is located, unless there is a danger of the stack growing down
into the program area. If you are writing a program which is intended to run
on its own, and it occupies addresses 0100 to 03FC, then you might want to
set up a stack starting at 0500, leaving plenty of stack space. With this set up,
you are not likely to corrupt the stack, and you can use it as you please.

The Z80 uses the stack in two ways, automatic and manual. The
automatic use is by commands such as CALL #0005. Just before this is
executed, the PC will have an address of the next instruction to be executed.
Executing the CALL causes the stack pointer (SP) to be decremented and
the high byte of the PC to be stored at the address held in the SP. The SP is
then decremented again, and the low byte of the PC stored. The SP is then
left with the address in the stack where the low byte of the PC was stored.
The new CALL address is then loaded into the PC, and the subroutine is
executed. When the RET instruction has been executed, the byte from the
address held in the SP is loaded into the PC low byte, the SP is incremented,
and then the byte at this new address is loaded to the PC high. This restores
the correct PC address that existed just before the CALL was executed, and
the SP is then incremented. This ‘top of stack’ position is never used; it is
kept empty to mark the position of the top of the stack memory. Figure 6.4
summarises the process.

As well as this automatic use of the stack by CALL and some other
instructions (such as RST), we can carry out stack commands in the form of
PUSH and POP. PUSH means putting the contents of a double register
onto the stack, using two bytes of the stack memory. In a PUSH, the stack
pointer is decremented, the high byte placed into the stack address, then the
SP decremented again to store the low byte. This is the same order of storing
as is used in the CALL instruction. The POP action follows the RET action,
with the low byte being returned, then the SP incremented, the high byte
returned, and the SP incremented again. The PUSH and POP operators can
be used with the operands PSW (meaning A and F), B (meaning Band C), D
(meaning D and E), and H (meaning H and L), so that all the registers that
are important to a program can be saved in this way. It’s time, then, to see
wh) we need these commands and how we use them.

stack empty

CP/M Interactions

SP is
decremented

(switch on) before PUSH
BFFF <— SP= BFFF. BFFF
BFFE 42H
BERE PUSH PSW
A= 42H =
BFFD F = 44H BFFD 44H «€%— SP = BFFD
LA ad
PUSH H
(HL Contains F@38)
BFFF BFFF
BFFE 42 BFFE 42H
sFED] 44 BFFD| d44H - SP-
BFFD
POPH
BFFC| Fp BFFC| FgH
BFFB| 3¢ <&— SP= BFFB BFFD| 30H
L~ W«,\J
HL now contains F@3@. The bytes
on the stack are not erased.
POP PSW
BFFF SP
“ BrEE
BFFF 42H The stack is now -‘empty’, even though
bytes are still stored. Any new bytes pushed
on the stack will replace some of these
BFFF 44H stored bytes.
BHFF FOH ‘ . s
p Figure 6.4 How the stack is used, with the
last-saved byte always the first to be
BEFF 39H recovered.
LA AAAANA

AF now contains 4244H

71

72 Introducing Amstrad CP/M Assembly Language

(a)

LXI B,F100H

MVI B,FFH this replaces byte FIH in B
LOOP:

(instructions inside loop)

JNZ LOOP end of loop

LDAX B next instruction

The accumulator will be loaded from the incorrect address. It should be
loaded from F100H, but the F1 byte has been replaced in the course of the
steps of the counting action.

(b)
LXI B,F100H
PUSH B save on stack
MVI B,FFH
LOOP:
(instructions in loop)
JNZ LOOP end of loop
POP B get correct BC contents back
LDAX B load accumulator

Because the contents of BC have been saved on the stack, the correct
address exists in BC when the LDAX instruction is carried out.

Figure 6.5 (a)lncorrect programming, because the byte in Bisreloaded. (b) How
the stack can be used to save the correct values and restore them later.

One very common requirement is to save BC because of a count. Suppose
we have a loop which has been programmed by loading the B register with
#FF, and using the usual decrement and jump-if-not-zero count system.
Now this would normally prevent us from making any use of the BC register
pair just before and after the loop. You couldn’t, for example, do what is
shown in Figure 6.5(a), where an address is loaded into BC just before a
loop, and then used afterwards. Using DCR B will have changed the number
in the B register, so that BC will quite certainly not hold the address #A8BC
after the loop - it will hold #0000 because B has been decremented to zero.
The program sample of Figure 6.5(b) gets around this by pushing BC on to
the stack just before the loop, and pulling it off the stack immediately
afterwards.

CP/M Interactions 73

(a)
PUSH B BC contents on stack
PUSH D DE contents on stack
POP D from stack to DE
POP B from stack to BC

Bytes are now back in correct registers.

(b)
PUSH B BC on stack
PUSH D DE on stack
POP B BC loaded with byte from DE
POP D DE loaded with byte from BC

Bytes exchanged between registers.

Figure 6.6 (a) The normal first-in-last-out use of the stack. (b) Using a different
order to shift two bytes into a different pair of registers.

Another use for PUSH and POP is in preserving flags. Suppose you have
just carried out a CMP action that set flags, but you want to carry out
another two actions before testing for a jump. If these actions alter the flags,
the jump will not be correct, but by using PUSH PSW just after the CMP,
and POP PSW just before the JP step, you canrestore the valuesin A and F
that were present immediately after the CMP, no matter how much has
happened between the PUSH and the POP. In this context, incidentally,
PSW means ‘processor status word’, the two bytes that contain the
important accumulator and flag contents.

As you might expect, PUSH and POP have to be used with some care,
particularly when more than one set of registers is pushed. A command like
POP PSW, for example, will read two bytes from the stack and place them
in the AF registers whether or not they belong there! For example, suppose
you have a piece of program which looks like Figure 6.6(a). This pushes BC
on to the stack, and then DE. When the time comes to pop these, the bytes
which will be returned first are the ones that came from DE. The rule of the
stack is strictly last-in-first-out, and DE was last in. By using POP D and
then POP B, the bytes will be restored to the register they came from. If you

2100 MVI C,02
2102 MVI E,1B
2104 CALL 2005
8187 MvI C,@2
8199 MVI E,45
@10B CALL 0005 —
P10E LXI H,@7CF
@111 PUSH H

8112 MVI C,02
2114 MVI E,41
B1146 CALL 0005
@119 POP H

@114 DCX H

@11E MOV A,H
P11C ORA L

211D JNZ @111
8128 RST 26

74 Introducing Amstrad CP/M Assembly Language

Figure 6.7 The assembly language program for the screen-fill plan.

used the sequence which is shown in Figure 6.6(b), however, the bytes would
be interchanged in the registers. The BC register would hold what was
originally in DE, and the DE register would hold what was originally in BC.
This can be used as a neat and simple way of exchanging register contents.

One very common use of the stack is connected with CALL instructions,
which is where we came into all this. When you use a CALL to 0005 or to
your own subroutines in RAM, these subroutines may corrupt the registers
you are using. You may, for example, have an important address in HL
when you call a subroutine. If the subroutine loads and uses HL, then you
are in trouble unless you use PUSH H just before the CALL and POP H just
after. Because the HL register pair is used so much in many routines, this
requirement is a very common one. Another common one is PUSH PSW
and POP PSW, because a lot of subroutines will alter both the A and F
registers. For our purposes, when we make use of any call to 0005, it’s as well
to assume that all of the registers are likely to be corrupted by it. Having
taken that lot on board, we can now carry on at last with our proposals to fill
the screen with letters *A’.

The screen-write loop

What we shall have to do, then, is to ensure that registers are either saved on
the stack each time 0005 is called, or reloaded before they are used. Often a
combination of the two is simpler than the use of just one method, and this is
illustrated in Figure 6.7, which is the outcome of the plan in Figure 6.1. To
clear the screen requires two codes, 1B and 45 to be sent in sequence. This
means that the C and E registers have to be set up twice, and 0005 called

75

CP/M Interactions

twice. If a program is likely to need a lot of screen clearing, then it’s a good
idea to make this into a subroutine that can be called at any point in the
program. You can, incidentally, put all of your subroutines at the start of a
program if you like, and have the first three bytes, at addresses 0100to 0112,
consist of a jump to the real start. Another option is to put all the
subroutines at the end. If you scatter them about the main body of the
program you will have to make sure that they can’t be executed accidentally.
You will normally do this by placing a jump just ahead of each of them.

Continuing with the ‘A’ writing program, the next part is the main loop.
To prepare for this, the HL pair are loaded with 07CF, the byte count. This
is actually more than we need, because the bottom line of the screen is

oy
]
Q

INK ZT1@=4d 84@86=S 33/.0=H 9T13d4=0 T+B@=9 JI=y
H HSMd 1TI8=d 9dB@=S 3ID/0=H 9134=0d 1+0@=d JDI=Y

1118 ZNC Q11B=d Yd00=5 3IDL0=H 913d4=0 1+@0=2 J3=Y

T 940 211@8=d ©¢408=5 33/@=H 913d=0 I+80=49 /@=Y

H'Y AOW 9110=d Y4@8=S 3I0L8=H 913d4=0 1+B@=8 De=Y

H X34 €118=d 9d80=5 43/0=H 9134=0 1+06=d 20=Y

H d0d 6118=d 8400=5 B088=H F13d=0 1+BB=8 AB=Y
Yo@esa Tl 2118=d 8408=5 43/8=H 1t3id=0 Z@BG=d @B=Y
'3 IAW $T10=d £408=S d43/0=H $134=0 ZOEP=d O@=Y
ZO'I IAW ZTIB=d 840@=S 42/@=H F134=0 S+B@=H @@=v

H HENd 1110=d Yd4d80=5 d43/08=H 9134=0 StB0d=9 @B=Y
42/@°H IXT 3810=4 Y488=S 00BB=H 9134=0 SvOe=d BP=Y
35068 TWI de1@=d YJev=5 80e0=H StI4=0 Ze2d=d9 0B=Y
St 3 1AW 68T0=d ¥Y408=S 8060=H 9134=0 ZEODB=H 0@=Y
Z0'0 IAW L010=d U400=S 0800=H F134=0 108=9 Be=Y
Soee TWI v8Te=d vY408=S 33/@=H S1.1=0 Z0@@=9 d43=Y
A1°3 IAW ZB10=d Y40B=S 3IDLOB=H d¥/1=0 ZBBB=9 4I=Y
Z2'2 IAW 0B18=d Y40@=S 33.L0=H 4v/T=0 1v¥OB=8 4I3=Y

Figure 6.8 The result of single-stepping the program.

76 Introducing Amstrad CP/M Assembly Language

normally reserved for use with CP/M messages. We'll keep things as they
are, however, to see what happens. In the loop, which starts at address 0111,
the HL registers are pushed on to the stack. The C and E registers are then
loaded for printing a letter ‘A’, and the BDOS call is made. Following the
call, the HL register contents are popped from the stack back into HL, and
the number decremented and tested so that the JNZ can form the loop.
When the countdown is completed, the routine returns to the waiting arms
of SID. Having entered the program, try single-stepping it with TW12. This
produces the listing shown in Figure 6.8. You can see very clearly here the
effect of the CALL 0005 on the registers, in particular how it clears the HL
registers. Note, too, how the S (stack pointer) register changes at each
PUSH and POP. The stack pointer shows the address of the next free place
on the stack, and it will go down by two units each time a register pair is
pushed, and rise by two units when a register pair is popped. You can see
from this section of listing that we are in no danger of misusing SID’s stack
by forcing it down to 0030. This, incidentally, is another good reason for
checking with single-stepping, because if you have one more PUSH than
POP, you will find the stack steadily growing downwards until disaster
strikes.

Having gone through all this work for the sake of the program, we had
better run it at normal speed now, by using G0100. The result is rather
unexpected. The line of A’s starts at the bottom of the screen and scrolls
upwards! The reason is that the sequence 1B 45 clears the screen, but it
leaves the cursor at the bottom of the screen. To home the cursor to the top
of the screen, we need to add the sequence 1B 48. Everything in CP/M
assembly language is hard work for the typing fingers! This screen-filling
action is not as fast as we could arrange if we could access the screen
addresses directly, but it’s roughly twice as fast as BASIC. For the purposes
for which we write CP/M programs, this rate of screen filling would be fast
enough. We can, in fact, speed it up by homing the cursor, because the
scrolling action takes time to execute. We could simply add six lines to the
program to add the home cursor bytes, but this looks like a good place to
look at a more useful clear-and-home routine which can be used more
generally.

This is illustrated in the program of Figure 6.9, which is another version of
the As program. The program starts with a jump to the main program,
because in this example the subroutine has been written at the start. The
subroutine is long but straightforward, and does not take all that many bytes
of machine code. It simply puts out the four codes that clear the screen and
home the cursor. The main program then calls this subroutine, and does its
act of filling the screen with As. There are, however, two new points involved
here. One is that SID starts to come near the end of its usefulness when
programs get long. If, for example, you have made a mistake early in this
program, and need to insert another instruction, the only way open to you,
using SID, is to type the new instruction into the correct place, and retype

CP/M Interactions 77

8108 JMP D126
@183 FUSH B
8104 PUSH D
@185 PUSH H
@186 MVI C,@2
2108 ™MVI E,1B
@10A CALL 0005
218D ™MVI C,22
@10F MVI E,45
8111 CALL 2005
@114 MVI C,02
@116 MVI E,1B
2118 CALL 0005
@11B MVI C,@2
@11D MV E,48
@11F CALL D005
8122 POF H
8123 POP D
2124 POP B
@125 RET

@126 CALL 21@3
8129 LXI H,@7CF
@12C PUSH H
812D MVI C,@2
@12F MVI E,41
@131 CALL 0825
2134 POP H
@135 DCX H
2136 MOV A,H
2137 ORA L
@138 JNZ 912C
@13B RST 86

Figure 6.9 An improved program, which starts with a clear screen and the
cursor in the ‘home’ position.

each following instruction also. That’s hard work. Unfortunately, because
of the history of CP/M, the alternative, using ED and the ASM family, is
also hard work. There are better methods, but you have to pay for them -
they don’t come free with the CP/M package. You may, however, be able to
get good software of this kind for the cost of the discs and a transfer fee from
the CP/M User Group, who perform miracles of kindness to keep CP/M
users sane and fed with good information and ideas - but more of that later.
The second point about the program of Figure 6.9 is that writing the
subroutine at the start is not just another Sinclair aberration; it can be
useful. The reason is that if you want to write another main program, you
only have to delete the existing main program, and you can keep the
subroutine and the JMP which points to the main program. If you are
developing a larger program with SID, and you may be adding subroutines,

78 Introducing Amstrad CP/M Assembly Language

START
SET COUNT 3Number of positions = 78¢4 in BC
Start at 20H gspace in HL $push HL,BC
Print it 3 2::}(; é_(l);“
PRINT Increment 3 inc. HL 3test for #7F,
CHARACTERS) character no. return to #20

Decrement count 3BC

Back if more 3test BC
END

Figure 6.70 A plan for printing out the entire character set of the computer.

it’s not a bad idea to leave more space deliberately, perhaps starting the main
routine at 0500 or higher so as to leave lots of space for the subroutines. It
may sound wasteful, but there’s plenty of space in the memory of the
CPC6128 and PCW 8256, and a few hundred bytes more or less make very
little difference to the time that is needed to load or save a routine on disc.

Having said that, we can now take a look at an extension to this program.
Suppose that instead of filling the screen with the letter ‘A’, we print out the
entire character set? This again is a rather slow action in BASIC, as you’ll see
if you write a BASIC program to doit. In assembly language, it’s not so very
different from what we have just done. This is important, because if you can
develop a new program out of one which you have tested and which you
know to be reliable, then your new program is more likely to be successful.
Figure 6.10 shows the planning stage of this program. In outline, we shall set
a counter, print a character, select another character and repeat this to the
end of the count. In more detail, we shall print characters that extend from
20H (32 denary) to 7FH, 127 denary. There are more characters available in
the Amstrad machine, using codes 128 to 255, and some for codes below
20H, but we’ll stick to the standard CP/M set for the present. The first
character code number is 20H, the spacebar character. This is loaded into
HL, and the BC register is loaded with the number of character positions on
the screen, taking 24 lines of 80 characters this time. The printing can be
done as usual by CALL #0005 when the C and E registers have been loaded,
and on each loop we shall have to increment the character number and
decrement the counter. We shall use a test for L holding the number 7F to
determine when HL has to be reloaded with 20H. All of this planning leads
to the program in Figure 6.11.

@108
9183
184
8185
8106
8168
a18A
@1@D
210F
@111
2114
2116
p118
@11B
911D
@L1iF
2122
@123
2124
8125
8126
8129
B812C
@12F
8130
@131
8132
8134
8137
28138
0139
a13A
813C
B13F
2140
2141
8142
@143
8146
@147
D1i4A

JMP
PUSH
PUSH
PUSH
MV1
MVI
CALL
MVI
MVI
CALL
MVl
MVI
CALL
MVI
MVI
CALL
POP
POP
POP
RET
CALL
cAaLL
LXI
PUSH
PUSH
MOV
MVI
caLL
FOP
INX
MoV
CPI1
cz
POP
DCX
MOV
ORA
JINZ
RST
LXI
RET

CP/M Interactions 79

8126
B

D

H

c,e2
E,1B
2085
c,82
E,45
2085
C,02
E,1B
208S
c,02
E,48
0005

2103
9147
B,0780
B

H

E,L
c,a2
2085

H

H

A,L

7F
0147

B

B

A,B

c

@12F
26

H, 0020

Figure 6.11 The assembly language for the plan of Figure 6.10.

In this routine, the clear-screen subroutine is placed at the start again, so
that you don’t have to type it all over again. The character printing routine
starts at address 0129 with a call to 0147. This is the HL reload routine, and
with HL loaded with 20H, the BC registers are loaded with the character
count number 0780. The loop then starts by pushing BC and HL on to the

80 /ntroducing Amstrad CP/M Assembly Language

stack. The character whose ASCII code number is in L is then printed by
moving it into E, and with C loaded with 2, calling 0005. This action will
print the character and corrupt the contents of the registers. The HL
registers are then popped (since HL was last pushed), then incremented, and
the content of L is tested to find if it is equal to 7F. The test is done by
moving the byte into A, and then using CPI 7F. If the byte is equal to 7F, the
conditional call CZ is used to reload the registers. The action of the
conditional call is rather like the action of the conditional jump, with the
advantage that the call will return to the next address automatically.
Whether a reload is needed or not, the next action is to pop BC so that the
number of character positions can be checked. This is done in the usual way,
and the program loops back if the required number has not been reached. If
you want to see the characters in the range 80 to FF, then replace the steps in
0139 to 013E with NOP instructions.

Reading the keyboard

The routine at #0005, used with 02 loaded into the C register, is very useful
for printing a character, and we could make a lot more of this if we could
also make use of the keyboard. As you would expect, there is provision in
CP/M for doing just this, by loading 01 into the C register before calling
0005. The routine which is called up in this way carries out a complete
INKEYS routine. In other words, when you call this routine, it will read the
keyboard and wait for a key to be pressed. If a key is pressed , then the
ASCII code for the character of that key will be placed in the accumulator.
Note that this routine uses the accumulator, not the E register. If no key is
pressed, then the routine keeps looping round, waiting for you. Unlike
INKEYS, then, we don’t have tc place this CALL inaloop to make use of it.
A loop of this type is called a ‘holding loop’, because it keeps the machine
held up until you do something - in this case, press a key.

Let’s start the proper way with a bit of planning. Figure 6.12 shows how
this might look. The first step is to get the character, the second is to print it.
Now we can look in more detail at each of these. Getting the character
consists of testing the keyboard, and then looping back if the number that is
returned is zero. In more detail, we shall use the routine at #0005 with C=1
to do all of this. The ‘print character’ part is done by the routine at #0005
with C=2 as before. Figure 6.13 shows the assembly language version of all
this. The subroutine at the start of the program is used to clear the screen,
and then the keyboard CALL starts. In the CALL, the keyboard is tested,
and a byte is put into the accumulator when a key is pressed. The
accumulator will then contain the ASCII code for that key. When a byte is
put into the accumulator, the routine returns, and the byte is printed by the
next CALL to 0005. When you try it, you’ll see that whatever key you
pressed has its letter displayed twice. This is because the call which gets the

CP/M Interactions 81

START
CLEAR 3use subroutine
GET CHAR C=9lI
CALL 0005
cC=m
PRINTIT move Ato E
CALL 0005
END §RST6

Figure 6.12 Planning for a program which will read the keyboard and print to
the screen.

2100 JMP B126
9183 PUSH B
2104 PUSH D
@105 PUSH H
@106 MVI C,@2
2198 MVI E,1B
@10A CALL 0085
219D MVI C,02
@10F MVI E,45
@111 CALL 0005
@114 MVI C,@2
0116 MVI E,iB
@118 CALL 0085
@11B MVI C,@2
11D MVI E,48
@11F CALL 0085
@122 POP H
@123 POP D
@124 POP B
@125 RET

@126 CALL 9103
2129 MVI C,01
@12B CALL 0285
@12E MVI C,02
2130 MOV E,A
@131 CALL 0005
@134 RST 06

Figure 6.13 The assembly language to implement the plan of Figure 6.12.

82 Introducing Amstrad CP/M Assembly Language

START
CLEAR guse subroutine
set up registers gC =@pAH
GET LINE set up buffer gDE = afdvess
CALL 0005
END

Figure 6.14 Planning to input a complete line and then print it.

0100 JMP 0126
0103 PUSH B
0104 PUSH D
0105 PUSH H
0106 MVI C,02
0108 MVI E, 1B
010A CALL 0005
010D MVI (C,02
010F MVI E,45
0111 CALL 0005
0114 MVI C,02
0116 MVI E,1B
0118 CALL 0005
0l1B MVI C(C,02
011D MVI E,48
011F CALL 0005
0l22 POP H
0123 POP D
0124 POP B
0125 RET

0126 CALL 0103
0129 LXI D, 0140
012C LXI H,0140
012F MVI MNM,50
0131 INX H
0132 MVI NM,00
0134 MVI C,04A
0136 CALL 0005
0139 RST 06

Figure 6.15 The assembly language for the line-print program.

key code also echoes it to the screen, making it unnecessary for us to print it
again. Don’t assume that all CP/M machines will be identical in this respect.
While you have this program running, it’s interesting to see which keys will
produce a result (find out which ones don’t) and which keys produce

CP/M Interactions 83

unexpected effects. Try the ESC, DEL, CLR and COPY keys, for example,
and try the effect of pressing the SHIFT key along with other keys.

Meantime, how about developing this fragment of program action into
something more useful? Suppose we wanted to print on to the screen
everything that was entered until the RETURN key was pressed? This
means using a loop, to test the key character that has been obtained to find if
itisa RETURN code (0DH, 13 denary). Figure 6.14 shows the plan for this
action, which is a lot simpler than it looks. You might expect that you would
have to carry out a loop action here, testing for a carriage return character.
In fact, CP/M contains this routine, and all you have to do is call it. The
routine is called by loading C with 0A, and calling good old 0005 once again.
You can then type whatever you like, using the DEL key to amend mistakes,
until you press the RETURN key, which terminates the action. All of the
text appears on the screen as you type it. The actual assembly language,
however, in Figure 6.15, shows a few steps that are not catered for in the
plan. The reason is that a line reading routine would be rather useless if it did
nothing more than print a line of text on the screen. The routine which is
called up by using C=0A and CALL 0005 will, in fact, do quite a lot more. It
will store the text in a buffer section of memory, and keep a count of the
number of characters up to the RETURN key. To do this correctly means
that some setting up has to be carried out. For one thing, a section of
memory has to be set aside, and its starting address put into the DE register
pair. In addition, the buffer must contain as its first byte the number of
characters that will be permitted. This is usually 80 for CP/M use, allowing
a line of reply to a question. The second byte in the buffer will eventually
contain the number of characters actually used, and we can set this to zero as
a start. The assembly language program as listed does all this setting up by
using HL to put in the characters, and loading DE with the starting address.
More elegant methods are available, but for the moment it’s results we want,
not elegance. When you run this routine, the screen clears, and you can type
characters, ending with a RETURN. Now if you look at the memory, you’ll
see that the characters are stored starting at address 0142, the third byte of
the buffer. The first byte of the buffer is the usual 80 character limit, and the
second shows how many characters were actually typed. Since one byte is
used for each number, this indicates that you should not try to accept line
lengths of more than 255 characters. There aren’t many people who write
lines of that length, and they all work for The Times.

What happens if you exceed the limit of length? Try it by making line
012F read MVI 0A, limiting you to ten characters. When you try to type an
eleventh character now, you’ll hear the loudspeaker beep, and the computer
will refuse to accept the character. The beep is not something that all
computers will do, it’s an Amstrad special, but the refusal to accept more
characters is standard. This routine is the CP/M equivalent of BASIC’s
INPUT. The count number for the characters entered is very useful in a lot
of applications, because when we put text into memory, we often want to

84 Introducing Amstrad CP/M Assembly Language

terminate it with a zero so that it can be read by a looping routine. The count
number added to the start address for the memory used will give the position
for the zero which will indicate termination.

Chapter Seven
More Routines

Take a message...

In Chapter 6, you remember, we looked at the method by which we could
write characters on the screen. It’s time now that we looked at ways of
putting something more interesting onto the screen, and words look like a
reasonably simple start to this type of programming. What do we have to
do? Well, to start with, we need to store some ASCII codes for letters
somewhere in the memory; we can’t just use a string variable as we would in
BASIC. We will have to know the address at which the first of the letters is
stored, and we also need some way to stop the process. Having done that, we
should be able to design a loop which takes a byte from the ‘text space’
(where the letter codes are stored) and passes it to the subroutine that prints
the character. This is, in fact, the reverse of the process which is carried out
when you load #0A into register C and call 0005. That routine placed the
starting address of the block of text into the memory whose starting address
was held in the DE register pair. It also required that the block should be set
up with a maximum line length number, and a zero byte which would later
be replaced with the correct character count. We can use this in two ways, as
we'll see later.

We start, as always, with a program plan. It’s not so easy this time,
because we need to decide how to end the loop. We could count the number
of letters that we want to place on the screen, but I want to look at a different
and simpler technique first of all - using a terminator. You are probably
familiar with this idea used in BASIC programs. A ‘terminator’ is a byte
which the program can recognise as a special character, one which is not, for
example, part of a message. A convenient terminator for any kind of data in
ASCII codes is 0, because the 0 byte (not the ASCII number 0, which is
coded as ASCII #30) never occurs in ASCII text. For text, the ‘carriage
return’ code of &0D is also quite a useful terminator, but for the moment
we'll stick with the zero byte. We can do this by testing for the presence of a
zero before the byte is used in the printing routine. Before, you note, not
after, because we must not attempt to print codes like this either on the
screen or on the printer. If, on the other hand, we were using the 0D
character as a terminator, we would want to make the test after printing,
because the carriage return is a valid character whose effect we need in the
string of characters, placing it into the writing routine. We would also need
the ‘line feed’ character, 0AH, to ensure that the cursor will move down by

86 /Introducing Amstrad CP/M Assembly Language

START
GET TEXT 3pmimoHL
ADDRESS
load from HL &———
check for terminator
READ & outif
PRINT increment HL
print
repeat
END $RST6

Figure 7.1 A plan for printing a message on to the screen, using a terminator
byte of zero.

one line after printing the phrase.

The plan that we need for using a zero terminator is shown in Figure 7.1.
What we have to do is store an address for the start of the message we want
to print on the screen. This will be the address of a string of bytes of ASCII
codes. I've chosen TEXT as the label name for this piece of memory. If we
were using a more elaborate assembler, as we shall soon, then this name
would be placed into the assembly language as it is. The main sequence is
straightforward, and the only detail that is really needed is in the READ &
PRINT section. The byte to be printed is loaded from the address stored in
HL, and tested for the zero terminator. If the byte is a zero, the loop ends;
otherwise, the byte is printed, HL is incremented, and the loop continues.

Figure 7.2 shows what we need. The HL register pair is loaded with the

180 LXI H,8150
@103 PUSH H

8184 MOV A,M
2185 ORA A

81D6 JZ @114
2189 ™MVI C,02
P10B MOV E,A
210C CALL 000eS
@10F POP H

@118 INX H

2111 JMP @142
@114 RST 86

B15@: 5S4 &8 &2 73 20 67 73 20 &9 74 @OD BA

Figure 7.2 The assembly language program for printing the message. The
bytes of the message will have to be put into place using SID's § command.

More Routines 87

address 0150 at which the text will be stored. In the loop, the accumulator is
loaded from M, the memory addressed by HL, which means that it copies
the first ASCII code in the text. This byte is tested, and if it is zero, the jump
to the RST 6 address is taken. If the code is acceptable, the printing
subroutine is called to print the character in the usual way. The HL address
is then incremented, and the program loops back to get another character.
Note that the HL register has to be saved on the stack as usual to prevent
corruption by the CALL 5 routine. When the 0 character is read, the
program then ends by returning to SID. Once the program has been put in
place, you need to put in the bytes of the message separately. A more
elaborate assembler would allow you to put in the message using letters
preceded by DB (define byte), in the form:

0150 DB‘This is a message, 0D,0A,00
- but the simple assembler of SID does not allow for such frills. We will need
to put in the bytes of the message by using the S0150 command, looking up
the ASCII codes for the letters, and adding the 0D,0A at the end to ensure a
carriage return and line feed.

Well, it works, and we can use it for greater things. Suppose, for example,
that you wanted to use this routine with a screen-clear and home-cursor
operation. You do not need to put in the subroutine that we looked at in the
previous chapter, because all it does is print the codes 1B 45 1B 48. If we
simply add these codes to our message, at the start, the screen will be cleared
and the cursor homed. Rather than alter all the bytes starting from 0150,
you can put in these codes at 014C to 014F, and alter the address for the LXI
H command to 014C. When you run this one now, you’ll find that the screen
is cleared and the cursor homed before the piece of text is printed.

Now we can look at the other problem, of using a piece of text which has
been prepared in the way that the line input routine of CP/M leaves it. This
time, the text is pointed to by the DE register, and it starts with the
maximum length code and has as its next byte the actual length. Using text
in this form is rather more difficult than using a terminator of zero, but it’s
worth looking at simply because we have such a convenient way of creating
it from the keyboard. As we proceed, you’ll probably conclude that most of
CP/M is organised to make life easy for the writers of word processors. This
makes it all the more difficult to understand why ED is still included in the
package! The outline plan is shown in Figure 7.3. The second layer of detail
is the part to look at, because the main scheme is the same - it still concerns
printing a message. This time, the address of the start of text space will be
transferred from DE to HL, assuming that we have just read it in from the
keyboard, using the line read routine. The character count will be placed
into register C, since only one byte is used. In the loop, the byte is read from
the HL address, printed, and the character count decremented and checked.
The program will loop until the decremented character count reaches zero.
Looking at the third layer of detail, we shall have to make sure that the
registers are kept on the stack to avoid corruption.

88 Introducing Amstrad CP/M Assembly Language

START

TEXT SPACE 3from DE toNL
put length in C
textin HL keep on stack
length in C keep on stack

* check count

PRINT TEXT print character
decrement count ¢ get C from stack
increment address (get HL fromstack
loop to *

3 replace on stack

END

Figure 7.3 A plan for using the text that the line input routine places in
memory.

2108 LXI H,8161
2103 MVI M,00
2105 DCX H
2106 MVI M,50
2198 FUSH H
@189 XCHB

810A MVI C,8A
@10C CALL @@8S

210F POP H
211@ INX H
@111 MOV C,M
@112 INX H
@113 FUSH H
@114 PUSH B
8115 MOV E,M
@116 MVI C,@2
@118 CALL 0085
@11 POP B
@11C DCR C
811D POP H

@11 JZ @124
9121 JMP @112
@124 RST @&

Figure 7.4 The assembly language for reading a phrase from the keyboard and
then printing it.

More Routines 89

All this leads to the routine in Figure 7.4. This places the phrase in
memory using the keyboard (for the sake of demonstrating the principles),
and then prints it using the new routine. At the same time, I have taken the
opportunity to introduce some new ideas into the older section of the
program, so we’ll look at all of it. The program starts by loading 0161 into
HL for a text line that will start at 0160. The zero byte is loaded here, and
then HL is decremented so that the byte #50 (denary 80) can be loaded. This
leaves HL containing the correct starting address. If we had started with
0160, we would have to have incremented to get to 0161, then decremented
to get back again. Having put the first two bytes into the line of text as
required, we then save HL on the stack, and get the address into DE by using
XCHG. This is a command which swaps the contents of the HL and DE
register pairs, so that the starting address of the text buffer is now in DE, and
whatever was in DE is now in HL. Since we have the address on the stack,
this doesn’t matter. We can now use the line input routine, which will place
the text that we enter into the DE address. The routine will corrupt the DE
contents, but this is unimportant since we have the correct starting address
stored on the stack. We pop this back into HL, and then increment so that
we have the character count byte ready, which we put into register C. The
HL register pair are then incremented again, so that they point to the first
character of the text, and both HL and BC are pushed so that we can print
this character. This is done in the usual way, and then registers BC are
popped. Register C is decremented and tested to find if it has been reduced
to zero. The HL pair are then popped, and the program jumps back to the
INX H step, ready for another character. You have to be careful about the
order of commands here. It might seem more logical to have the sequence:

DCR C
JZ 0124
POP H
JMP 0112

but this will not be good for your stack! The reason is that when C is
decremented to zero, the program stops with the HL contents still on the
stack. For a short example, with SID in attendance, this doesn’t matter too
much, but it could cause disasters in a longer routine. A lot of care is needed
to ensure that there is a POP for each PUSH, especially when the program
branches between the PUSH and its POP.

When you try this out, it doesn’t look as if it works! You enter a phrase,
press RETURN, and all you see is the prompt for SID appearing under the
letters. In fact, the program Aas worked. The point is that the input routine
restores the screen cursor to the start of the line again. This means that
whatever you typed is printed again over the top of the original phrase, so
you can’t see it. To convince yourself, type another phrase, but this time start
with ESC E ESC H (pressing the escape key, then E and so on) and then the
letters of your phrase. This will put the screen-clear, home-cursor bytes into

90 Introducing Amstrad CP/M Assembly Language

the text memory, so that when you press RETURN you will see the screen
clear, and the message will appear at the top of the screen. Now do you
believe it?

Still more text

While we are on the subject of putting text into the memory and reading, we
can develop these routines a little further. One of the main guiding principles
of assembly language is that you always do a little at a time, and check it.
Back in the Stone Age days, it used to be reckoned that a programmer would
write about ten lines of good working code each day. Nowadays, a lot of
people write faster than this, and sometimes it shows! For your own
programs, it’s a good idea to be very critical and to test exhaustively before
you decide to expand a piece of program. By making your programs out of
subroutines, with no subroutine longer than about 50 or 60 lines, you can be
more certain of good results than if you blindly start writing great chunks of
code. The point about using the assembler part of SID is that it allows you to
write and test routines which you can later copy to work with ED and ASM.
As you’ll discover shortly, writing a program with ED and ASM takes time,
and you will prefer the program to be one that you are sure will work first
time, rather than one that needs a lot of correction.

Now to work. Figure 7.5 shows the outline of what we hope to achieve
eventually. I stress eventually, because I want to build this up slowly, as an
illustration of what can be done using only the comparatively limited
facilities of SID. We want to be able to type in text lines, terminated by the
RETURN key, so we shall be using the RETURN key like the carriage
return of a typewriter. Each time the RETURN key is pressed, we need to
issue a carriage return and line feed to the screen, so that we do not type one
line on top of another. We also want to store the lines one after another in
the memory, wait for a key to be pressed, and then print them on to a clear
screen. Rather than develop this as one long program from the start, we

START

B -
INPUT LINE UNTIL C/R
PUTIN C/R L/F CODES
UNTIL CTRL-Z

PRESS ANY KEY LOOP
PRINT ALL TEXT

Figure 7.5 An outline plan for a text storage and printing program.

@10a
2183
@186
@137
@21a8
810aA
@1@D
210E
B16F
2110
@111
0112
2114
8117
2119
211A
@11B
Z11E
8121

@1DF
QLEB
B1E2
@1iE4
B1E7
B1E9
@1EB
B1EE
@1EF
2iFa
B1iF2
@1F3
B1iFS

LXI
CALL
PUSH
XCHG
MVI
CALL
POP
INX
MOV
INX
MOV
CPI1
Jz
MVI
DAD
INX
CALL
JMP
RST

PUSH
MVI
MVI
CALL
MVI
MVI
CALL
POP
RET
MVI

‘DEX

MVI
RET

H
c,a2
E,2D
00es
c,a2
E,0A
2005
H

M, 208
H
M,50

More Routines

91

Fiqure 7.6 The assembly language for getting the text on screen and into

memory. The action is terminated by using CTRL-Z.

shall construct it in two parts, so that we can be certain that everything is
working as it should. We can then add the printing part, and use SID to test

that it will operate correctly.

The first part of the plan produces the program section of Figure 7.6,
which gets the text and puts it on to the screen and into memory. This is
made out of bits that we have used already, and the only novelty is the test in
0112, CPI 1A. This tests for the CTRL-Z keys, and is the way that the

92 Introducing Amstrad CP/M Assembly Language

@121 CALL B1BZ
8124 PUSH H
2125 MV1I C,@B
@127 CALL 0285
812A ORA A
B12B JZ 2125
@12 POP H
@1ZF RST 06

@1B2 PUSH H
®1B3 LXI H,@1CB
@1B& PUSH H

@1B7 MOV A,M
@1B8 ORA A

BiB9 JZ BiC7
@1BC MOV E,A
@1BD MVI C,B2
@1BF CALL 0005
@iC2 POF H

@1C3 INX H
@1C4 JMP @1B&
@iC7 FOP H
@1C8 POP H
@1C9 RET

@iCB: 1B 45 1B 48 S0 52 45 33
53 280 41 4E S9 20 4B 45
@1DB: S9 @D @A 88 ES

Figure 7.7 The ‘press any key’ steps.

program jumps out of its loop. The CALL 01FO0 sets up the numbers at the
start of each line of text, and the CALL 01DF is the subroutine for carriage
return and line feed to prevent overwriting text on the screen. If you try out
this lot, typing several phrases terminated by RETURN, and ending by
typing CTRL-Z (RETURN), you can see the result by using D0200. The
text for each phrase is stored, with no space between them, in the memory.
Each phrase carries the bytes 50 (maximum line length) and the character
count at the head, as you would expect. Now it may for some purposes be
useful to have these counter numbers embedded in the text, but for most
purposes it would be more useful to replace them with the bytes 0D and 0A,
since we want a carriage return and line feed at each point where these items
are placed. The 1A byte is also placed in the memory, and this can be used as
the end-of-text marker. Knowing that the first half is working, then, we can
get to work on the second part.

More Routines 93

We want to start with a ‘press any key’ step. This can be done by using the
inevitable CALL 5 again, with 0B loaded into register C. This call is like
INKEYS in BASIC, however. It tests the keyboard, and moves on without
waiting. 1f a key happens to be pressed while the instruction is being
executed, the accumulator and the L registers contain 01, otherwise 00. To
use the call, then, we need to put it into a loop, testing for A= 01 to indicate
a key pressed. This is neater than using an input step, which requires the
RETURN key to be pressed. We also want to print a message, because the
user (you, probably) will need to be reminded of what to do. These, then, are
the next items to attend to. These stages are illustrated in Figure 7.7,
showing only the new parts. Each time the program is expanded like this, the
RST 6 is overwritten, and put in again at the end of the new section. In this
way, we always return to SID at the end of the routine. We can, however,
break off in the middle of a routine, by using a ‘breakpoint address’ in the G
command of SID. For example, G0100,011F would command SID to
execute the program which starts at 0100, but to stop at 011F. The stop is
done by putting a RST 6 code in the memory at the desired address, and
replacing the correct byte after the program has returned to SID. By testing
each piece as we add it in this way, we have made the use of a breakpoint
unnecessary, but it’s useful to bear in mind for later.

In the new chunk of routine, then, the call to 01B2 brings in the routine
which prints a message. This is the standard routine that we used before,
with a zero used to terminate the message. The bytes of the message are
stored from 01CB onwards, and they start with the clear-screen and home-
cursor codes. The carriage return (C/R) and line feed (L./ F) codes are placed
at the end of the message, and finally the zero terminator. Incidentally, you
need to use D to show these codes, because if you use L they will appear as
8080 instructions rather than as hex numbers.

In the print routine, some care has to be taken with the stack. At the time
when the routine is called, the HL registers are being used to hold a current
address in memory, which we don’t want to lose. As it happens, we don’t
really need to use it in this program, but who knows what else we might want
it for. If we start the routine with PUSH H, then the address is safe. We can
then load in the address of the start of the message, but we must then push
HL again to prevent this address from being lost when CALL 5 runs. The
loop that follows is a familiar one, but note that when the zero is found and
the program jumps to 01C7, there are two POPs. This is because the test for
a zero is made when HL has been pushed twice, so it must be popped twice at
the end. Normally in the loop, the HL pair get popped and pushed an equal
number of times, but things are different on the last loop. This is another
example of how you have to watch the use of the stack whenany jumpis made.

Once the message has been printed, we need the ‘press any key’ action.
This is placed in addresses 0124 to 012E. Once again the PUSH H has to be
used to prevent corruption of HL, and by loading OB into register C and
calling 0005, we test the keyboard. The ORA A is needed because a load by

94 Introducing Amstrad CP/M Assembly Language

itself does not affect flags. If the accumulator contains zero, no key has been
pressed, and the routine loops around. When a key is pressed, the RST 6
returns everything to SID so that you can check what has happened.

Now the next thing to add is the routine for printing the contents of the
memory on the screen. We need to put in a C/R and L/F in place of the
numbers, and to halt and return when we find the 1A byte which signals the
end of the text. There two ways that we could go about this. One is to go
through the text initially, stepping from one set of numbers to the next and
replacing the numbers with C/R L/F bytes. The other possible method is to
print directly, replacing the numbers as we find them. The first method is
fast, because the length-of-text number allows us to find the next pair of
numbers quickly and easily, whereas if we go byte by byte we have tokeepa
count, and check the count each time. Compared with the time needed to
print a character on the screen both methods are acceptable as far as speed is
concerned. The first method scores, however, because its routine does not
use a CALL 5, and so no pushing of registers is needed. If you use a count in
the course of printing, the register that holds the count will need to be
pushed before each print action, and popped afterwards. The first method,
then, is the one that we shall use. You might like to think about the
possibility of a routine which dispensed with a character count, and simply
printed the LF and CR in place of the character count numbers until it
encountered the end-of-text character, 1A.

The assembly language listing is shown in Figure 7.8. We load in the text
starting address of 0200 to HL, and we know that the first two bytes will be
#50, the maximum length of text, and then the actual length byte. By using
MVI D,00 we ensure that the D register is cleared. This is important,
because the method of stepping from one line to another will be by adding
the DE contents to the HL contents, and any byte in D will affect this. The

212F LXI H,0200
2132 ™MvI D,20
@134 MVI M,@D

8136 INX H
8137 MOV E.M
8138 MVI M,8A
B13A INX H
@13B MOV AM

@13C CPI 1A
@13E Jz 08145
@141 DAD D
@142 JIMP @134
8145 RST Q6

Figure 7.8 The program steps for replacing the length bytes by the line feed and
carriage return bytes.

More Routines 95

sixteen-bit addition has to be used because though the numbers that we add
to HL are always single bytes, the result may not be. The next step is MVI
M,0D which replaces the byte #50 by the carriage return byte. This is the
start of the loop which will continue until all of the number bytes have been
replaced. The HL register pair is incremented, and the length byte is loaded
into register E, ready to be added to HL. The OA byte is then put into the
place of this length byte. We then have to increment HL again before adding
the DE contents, and after this increment, the HL address will be the address
of the first character following the new line. If we have reached the end of the
text, this will be the 1A character, so we test for it here. If the character is not
1A, we add DE to HL to get the address of the next pair of number bytes,
and then loop back to the replacement routine. Once again, you can add this
to your program, and test it. If your program is identical to mine (which it
will be unless you are using your own methods), then the start of this part of
the routine is at 012F. You can therefore put in some text before you enter
this routine, and then single-step this part after you have entered it. This is
done by setting the PC address to 012F, and then using T for each step, or TS
to step in fives, whichever you find more convenient.

Now all that is left is to print the memory contents. Once again, we could
make use of the ending number in HL to count out the number of print
steps, but this would mean saving the HL register each time we call the print
routine. It’s easier, as usual, simply to print each character, starting at 0200,
until we reach the 1A terminator. This only requires a test when each
character is. read in. We shall still have to save HL at each step, but no other
registers will be needed, and no number comparisons. Remember
throughout this that you will need the routines that sit just under 0200, so
when you record the bits of this program, always record from 0100 to GIFF
to make sure that these routines are incorporated. The latest addition is
shown in Figure 7.9. It’s completely straightforward, and it just reads the

9145 LX1I H,0200
2148 PUSH H
8149 MOV AM
8i4aA CP1 1A
@i14Cc JzZ 2154
@14F MVI C,82
8131 MOV E,A
@152 CALL @0as
@155 POFP H
8156 INX H
@®157 JMF 0148
2154 POP H
21SB RST 0é&

Figure 7.9 The program portion for printing the text.

96 Introducing Amstrad CP/M Assembly Language

0100
@133
0106
@137
2138
210A
213D
21GE
B1oF
2110
0111
@112
@114
@117
2119
@11A
@11B
B11E
@121
2124
2123
0127
@12A
@128
012E
B12F
0132
Q124
81346
G137
@138
B13A
@13B
G13C
Q13E
@141
@142
2145
@148
@149
zi14A
@14C
