8 PRACTICAL

NLOGO

ON THE

AMSTRAD

MARTIN SIMS

Practical Logo on the Amstrad
CPC6128, PCW8256 and PCW8512

Practical Logo

on the

Amstrad

CPCé6128, PCW8256 and PCW8512

M. Sims

FOR WENDY, MARK AND ANDREW

MARCH 1986

All programs in this book have been written expressly to illustrate specific teaching points.
They are not warranted as being suitable for any particular application. Every care has
been taken in the writing and presentation of this book but no responsibility is assumed by
the author or publishers for any errors or omissions contained herein.

COPYRIGHT © Glentop Publishers Ltd 1986
World rights reserved.

No part of this publication may be copied, transmitted or stored in a retrieval system or
reproduced in any way including but not limited to photography, photocopy, magnetic or
other recording means, without prior permission from the publishers, with the exception of
material entered and executed on a computer system for the reader’s own use.

ISBN 1 85181 046 3

Published by:
Glentop Publishers Ltd
Standfast House
Bath Place
High Street
Barnet
Herts EN5 5XE
Tel: 01-441-4130

Printed by The Eastern Press Ltd
London and Reading

Contents

Chapter 1: A Brief Introduction To Logo

This briefly introduces the reader to the language Logo. It covers the
setting up of CP/M to load Logo. It outlines the basic graphics commands
like FORWARD, BACK, RIGHT, LEFT, CLEARSCREEN etc. It
discusses the use of REPEAT and shows how to create procedures.
Editing procedures is also covered.

Chapter 2: Displaying Data; Using Random Numbers

Here the reader will see how to format discs and LOAD & SAVE procedures
and disc files. The use of variables is introduced and a series of absolute
commands such as SETPOS are described. The RANDOM command is
also described and its use in Monte—Carlo analysis outlined.

Chapter 3: Decision Analysis

In this chapter, greater flexibility and innovation are encouraged and
facilitated by the introduction of further commands. The chapter develops a
method for managerial decision analysis on a user/computer interactive
basis.

Chapter 4: Sales Forecasting

This chapter adopts a case study approach to forecasting and develops
procedures to collect data. Using this information, it makes predictions
using ‘last period’, ‘simple average’, ‘moving average’ and ‘exponential
smoothing’ techniques. Seasonal variations within the data are also
accoutned for.

11

27

51

65

Chapter 5: Investment Analysis
Here procedures are developed for investment analysis purposes; it uses

‘payback period’ and ‘discounted cash—flow’ methods to give a variety of
information concerning investment alternatives.

Chapter 6: Production Scheduling
In this chapter the problem of finding the most efficient order in which to do
a set of jobs is approached.

Chapter 7: Cost Effective Ordering
This chapter considers inventory control. Graphics procedures are used to
demonstrate the basic Economic Order Quantity model.

Chapter 8: Stock Control In The Real World

The EOQ from Chapter 7 is extended to enable a simulation if stock
behaviour over a given business period.

Chapter 9:Linear Programming
This chapter concerns itself with the development of a package for

determining the most profitable use of factors of production when a range of
possible products could be made with the available resources.

Appendix 1: Loading Logo on the 8256 and 8512

Appendix 2:Editing Procedures on the 8256 and 8512

Appendix 3:Formatting Discs on the 8256 and 8512

Index

87

105

117

131

141

149

151

157

159

Introduction

Many different languages are available for use with computers, some more sophisticated
than others, some for specialised use and others for general-purpose use. As most home
microcomputers are sold with the BASIC language, many beginners use this to
communicate with a computer for the first time. Increasingly, however, Logo has become
available as an alternative to BASIC. Logo is unique in that it is the first powerful language
designed specifically for the beginner. It has been designed as an introductory language for
everyone regardless of age or academic ability to use and enjoy.

Applied Logo is the second book in a series; the first, ‘Using DR Logo on the Amstrad’,
adopts a more traditional approach using graphics and text computer applications that
have a very wide appeal.

‘Practical Logo’ however makes use of more useful possible applications including decision
analysis, stock control, investment analysis, simulation techniques, forecasting, production
scheduling etc. It attempts to point the reader/user towards the more serious uses of Logo
that make it a viable alternative to BASIC.

Throughout this book a large proportion of the available syntax is considered. The user,
having read this book, will be in a position to make good use of the full language as described
in the sourcebook provided with the Logo.

Chapter 1

A Brief Introduction to Logo

If you have a PCW8256 or a PCW8512, please turn to Appendix 1 to see how to load your
Logo, then read on from the top of page 12. If instead you are using a CPC6128, read on!

Your DR Logo program is on side 3 of the System/utilities disc. To load Logo however, you
must first insert the other disc, with side 1 upwards, and then press:

CTRL - SHIFT - ESC

This means you must hold down the CTRL key and a SHIFT KEY, hit ESC briefly, (top
left of keyboard) and then release the CTRL and SHIFT keys. The computer is now set up.
Now to load your Logo.

Now you must type:

/-——\
lcpm <ENTER> This is SHIFT - @

After some clunking noises from the disc drive, the screen will come up with a message
saying something like:

CP/M Plus Amstrad Consumer Electronics plc
v 1.0, 61K TPA, 1 disc drive
A>
In the opposite corner of the screen will be a message saying which disc drive is being used.

Now take that disc out of the drive and place the other disc in, with side 3 uppermost. Then
type:

logo3

and then press the RETURN or ENTER key. After some more clunking and a brief guest
appearance by the turtle, the screen will come up with:

11

Welcome to
Amstrad LOGO V2.0

Copyright (c) 1985, Digital Research
Pacific Grove, California

Dr. Logo is a trademark of
Digital Research

Product No. 6002-1232

Please wait

When the program is fully loaded, the screen will look like Figure 1.1 below.

Start-Up Screen

FIGURE 1.1
When the computer is awaiting your command, it displays the Logo prompt ?’ followed by
the square cursor where your command will appear. The computer expects all its
instructions to be in lower case — at this stage, it should be in lower—case mode, but if you
start getting capital letters when you type things in, just tap the CAPS LOCK key once.

As you can see, the computer is requesting instructions, so let’s give it something to do.

Whilst the computer is waiting for your input, it displays the Logo prompt ‘?’ followed by
the black cursor ‘B’ where the command that you type in will appear.

12

The hollow arrow—head in the centre of the screen is the so—called turtle. This is the pencil
point that will move around the screen at the user’s command, usually drawing a line as it
goes.

To make the turtle move, the user must give it a command. The basic graphics commands
are:

FORWARD
BACK
RIGHT
LEFT

Try typing this command:

forward 100

Nothing has happened yet so press the RETURN key.

FORWARD (fd)

This command, which can be abbreviated fd, moves the turtle forward in the
direction it is facing a distance determined by the number following the
command.

Now, you can see that turtle has moved and this time drawn a line one hundred screen units
long. Now try the companion command by typing:

back 50 (remember to hit RETURN)

BACK (bk)

This is a command that, when followed by a space and an input moves the
turtle a given number of screen units.

Notice that when either of these commands is used, the abbreviated version can be used.
Before you hit RETURN, work out what will happen when you type this next command:

fd -30

13

Now suppose you want to draw lines in some other direction: you need a command to turn
the turtle. A command that does this is:

RIGHT (rt)

This command, when followed by a space and a number, will rotate the
turtle in a clockwise direction the input number of degrees of rotation.

Now try these commands:

rt 90
rt 90

No more reminders to hit RETURN will be
given.

LEFT (It)

This command, when followed by a space and a number, will rotate the

turtle in an anti—clockwise direction the input number of degrees of rotation.

How about this command?:

°t - (-30)

Why not try moving the turtle around the screen using the four commands described thus
far? After a while your screen might look like that shown below in Figure 1.2

Your Screen May Look Like This

FIGURE 1.2

To get rid of the mess use the command:

CLEARSCREEN (cs)

This command will ERASE the graphics screen and place the turtle in the
middle of it facing ‘North’.

Thus far you have been giving the turtle orders and, whenever you hit RETURN, they have
been obeyed. If you wanted to, you could key in a series of commands separated by spaces
and upon pressing RETURN all will be obeyed in the order they were typed in.

Try the following commands in a ‘multistatement line’ to draw a rectangle.

cs fd 100 rt 90 fd 50 rt 90 fd 100 rt 90 fd 50 rt
90

Now hit RETURN an< your rectangle will be drawn.
By now you will have made a ‘mistake’ in one or two of your commands to the turtle and
having typed in a ‘bad’ command and hit RETURN your screen will probably display an
error message similar to the one shown below.

I don’t know how to makk

What do you notice about this line? Well, you can see that apart from the ‘CLEAR-
SCREEN’ command we have asked the turtle to:

fd 100 rt 90 fd 50 rt 90

Instead of writing out the above commands twice, you can, in Logo, write

repeat 2 [fd 100 rt 90 fd 50 rt 90]

REPEAT (repeat [])

This command, when followed by a space and an input, will carry out the
commands contained within the instruction list, ([]), the input number of
times.

15

A command to draw a square with sides measuring fifty screen units would therefore be:

repeat 4[fd 50 rt 90]
N S
Do four times the commands in the instruction list.

What will happen with this next command?

Figure it out before typing it in and see if you were correct in your analysis.

repeat 3@[fd 13 1t 360/30]

Notice that your machine’s arithmetic operations can work within Logo commands, so, for
example, you could say:

fd 35@/10%*2

Note that the standard mathematical rules regarding precedence of arithmetic operators
are used: i.e. in a long calculation involving X (*), + (/), + and —, the multiplications and
divisions will be done first (from left to right), then the additions and subtractions (also from

left to right).
Well, the above line will draw a circle, or to be precise a THIRTY SIDED POLYGON.

If you wanted the execution of the circle to be a little more dramatic you could hide the
turtle during the drawing operation:

HIDETURTLE (ht)

This command hides the turtle from view, which a) speeds up the drawing
operation and b) makes the resultant drawing clearer.

Obviously there is a command to make the turtle reappear.

SHOWTURTLE (st)

This command will, if the turtle is hidden somewhere on the screen, make it
visible.

16

If you wanted to, you could try:

PENUP (pu)

This command lifts the turtle’s ‘pen—point’ and stops it from drawing during
its various manoeuvres.

PENDOWN (pd)

This command puts the turtle’s pen—point down for the resumption of
drawing.

Now, all of this is quite interesting; what you have been doing is ‘talking’ to the turtle in
‘DIRECT MODE’ or, as it is sometimes called, “TOP LEVEL’. However, once the
computer has obeyed the command or commands, that particular line is discarded never to
be used again. If you wish to create something that you can use repeatedly then it must be
stored in a:

Procedure

A procedure is a named list of commands that your computer will understand and obey. It
stores each line as you type it in and obeys these commands when called upon to do so. The
word “TO’ followed by a space and a procedure name followed by RETURN allows the user
to create a list of instructions which in another computer language might be called a
programme, but in terms of LOGO is called a ‘PROCEDURE’. The last line of any
procedure must be ‘END’.

TO (to)

This is a special word that indicates the beginning of a procedure definition.

END (end)

This is a special word that, as the last line of all defined procedures, indicates
the end of a procedure definition.

17

Let’s define a procedure to draw the circle previously drawn. Type:

to circ
repeat 30 [fd 13 1t 360/30]
end

Notice that after pressing RETURN you receive the message:

circ defined

Now simply clear the screen and draw the required figure by typing:

€S circ

One thing to mention about procedures. There are certain names for procedures that can’t
be used, For example try typing:

to stop

You will receive a Logo messege telling you that ‘stop is a primitive’. This means that the
word STOP is one of the ‘key’ words in Logo like FORWARD, BACK etc. You can’t use

primitives as procedure names.

Consider this next procedure:

to pattern
repeat 12 [circ rt 30]
end

In the above procedure a previously defined procedure has been ‘nested’. Type:

cs pattern
and see what happens.

Now try this:

to pattern2
repeat 5 [pattern 1t 36]
end

You have now ‘nested’ procedures three deep. Just imagine the power of LOGO when
much larger procedures are nested FIFTEEN or TWENTY DEEP.

18

In order to get the full benefit from ‘pattern2’, it is best to give the graphics turtle a little
more room to move. The easiest way to do this is to make use of the ‘FULLSCREEN’
command.

FULLSCREEN (fs)

This command selects a full graphics screen.

If you use FS, you won’t be able to see the orders that you are giving the turtle, but you can
revert to the old screen by saying:

SS

SPLITSCREEN (ss)

This command reserves a window for text on the graphics screen.

If you would like to control the number of lines available for text, you can use the
command:

SETSPLIT (setsplit)

This command, when followed by an input number, defines the number of
lines available for text in the split screen.

By now your screen will display the rather elegant display shown below in Figure 1.3.

PATTERN2
FIGURE 1.3

19

If you wanted to stop the procedure early, you could hit CTRL~-G (or ALT-G or STOP on
the 8256 and 8512). The screen will look something like Figure 1.4, with the message:

Stopped! in circ: fd (or something similar)

A Stopped Procedure

FIGURE 1.4

There is now an obvious need to be able to EDIT procedures. If you have an 8256 or an
8512, turn to Appendix 2.

Editing Procedures

Let’s say that we want to make a couple of changes to a particular procedure. Suppose, for
example, we wish to change the shape of the square in a ‘SQUARE’ procedure.

In the event that this particular procedure is not in your computer, type it in as below:

to square
fd 50

1t 90

fd 25

1t 90

fd 50

1t 99

fd 25

1t 90
end

Now type ‘cs square’ and run the procedure.

20

Having done this, your screen might look something like the one shown below in Figure
1.5.

SQUARE Procedure

FIGURE 1.5

Let’s now have a look at the method provided in Logo by which we can insert new
commands in previously defined procedures and also erase and/or replace commands. In
other words, the facility to EDIT any procedure already stored in the computer.

EDIT (ed)

This is a Logo command which puts the user in touch with the Logo editor.
In this mode the user will be able to change any previously defined
procedure.

Now type ‘square’ and run the procedure. Having done this, next type:

ed "square
On pressing RETURN the screen will change and a listing of the procedure will be given.
Note that the name of the procedure is preceded by double inverted commas (“). It is
important that you use double and not single inverted commas, otherwise the computer

will not recognise the entry as a procedure name.

The screen changes, ready to make alterations to the procedure. At the moment the screen
looks as shown in Figure 1.6

21

to square
td 5@

1t 99
td 25
1t 98
td 50
1t 90

fd 25
1t 99

Drive is A:

The Edit Screen

FIGURE 1.6

Let’s assume that you want to change the distances in the ‘fd 25’ commands. The first thing
to do is move the cursor to the first line to be changed. You might be able to use the arrow
keys to move the cursor, in which case, use them instead of the CTRL keys described, if you
prefer. Press CTRL-N three times and this will move the cursor down (don’thit RETURN
during this operation). Having selected the third command (fd 25) for modification, you
can now delete the 25 by hitting the DELete key twice and type in say 50.

DON’T HIT RETURN YET

You can now bring the cursor down to the end of the next ‘fd 25°. Then move it to the left
one place by hitting CTRL-B once. You can now delete the ‘2’ and type in a ‘5’. The cursor
isnow over the ‘5’ of the ‘fd 25’ command. Move the editing cursor one place to the right by
hitting CTRL-F once. You can now delete the ‘5’ and type in a ‘0’. Having changed the
necessary commands, your screen looks like the one shown below in Figure 1.7.

[to square

fd 50
1t 90
fd 50
1t 99
fd 59
1t 90
fd 59
1t 99
end

Edit

Orive is A:

The Edited Procedure

FIGURE 1.7

22

You are now ready to leave the Logo Editor and to do this you must hit

copy

Will the new version of ‘square’ work? Try it by typing ‘square’.
Let’s now examine an edit where we want to insert a new command in a procedure.

Imagine you want to put a ‘hideturtle’ command in at the beginning of the procedure. Type:

ed "square
You should now be in edit mode with the procedure listed. You will notice the cursor in its
usual position at the end of the first line of the procedure. It is now intended to insert the

command ‘ht’ as the new first line. Now to open up a space for a new first line you can hit
RETURN.

Try it a few times and see the effect: your screen will look a bit of a mess, so all you have to
do is hit the ESC key.

You will now receive a message saying:
Stopped!

Now type

ed "square

and you will see that your original procedure is safe and sound. Now to put the ‘ht’
command in as your new first line, hit

RETURN

Now type ‘ht’ and your new first line will appear on screen. Now hit

Copy

Suppose we wanted to rub out a command? The first thing we must do is to get back into
edit mode. Type:

ed "square

23

Now there is the procedure; let’s imagine that the ‘ht’ command is no longer necessary. DR
Logo uses various control characters to control the screen display and cursor movement
and these can be used to supplement the use of the keys already described. Try
experimenting with a few of them before proceeding.

CTRL - A will locate the cursor at the beginning of the line at which it is currently
situated.

CTRL - E will move the cursor to the end of its current line.

CTRL - H will act like the delete key and remove the character to the left of the
cursor.

CTRL - D deletes the character covered by the cursor.

CTRL - 0 will open up a space on the screen (try this with the cursor at the
beginning of a line).

CTRL - B moves the cursor back.

CTRL - F moves the cursor forwards.

CTRL - N moves the cursor down a line.

CTRL — P moves the cursor up a line.

CTRL - C ends the editing and re—defines the procedure just like the ‘COPY’ key.

Note that on your particular model of computer, you may find that some of these control
keys will only work in EDIT mode. Also, you may not be able to use the arrow keys to move
the cursor, or use the COPY key to complete the edit.

Well, if you can, you might like to stay with the arrow keys until you become a little more
experienced and so in that case, hit the down—arrow key once (else CTRL-N) and use the
DELete key to take out ‘ht’. Now you can use the DELete key a third time to finally delete
the line, then hit CTRL-C or COPY to re—define the procedure.

Review of Progress
By now you are in a position to create almost any pattern you wish, to move the turtle to any
required screen position, to draw, store and recall procedures, and then call all these moves

and procedures up by nesting them into a final procedure. All this can be achieved using
combinations of these commands:

24

Drawing Mode

(fd)

(bk)

(r9)

Iy

(cs)

(t0)
(repeat)
(pu)

(pd)

(s1)

(h)

(end)
Edit Mode
ed “name
arrow keys
CTRL - A
CTRL -E
CTRL - H
CTRL-D
CTRL - O
CTRL - N
CTRL - B
CTRL - F
CTRL - P
CTRL-C
COPY
ESC

FORWARD number

BACK number

RIGHT number

LEFT number

CLEARSCREEN

TO PROCEDURE

REPEAT number

PENUP

PENDOWN

SHOWTURTLE

HIDETURTLE

END

Positive or negative.

Positive or negative.

(Degrees of turn 0 to 360 + or —).

(Degrees of turn 0 to 360 + or —).

Wipes clear the screen.

Defines a procedure name.

Enables repetition of whatever is in [command
list]the square brackets.

Enables turtle to lift its pen off the

paper and move it to a given position on the screen
without drawing a line.

Places the pen (turtle) in drawing mode.

Makes the turtle visible.

Hides the turtle and reduces the time taken for a
procedure to be carried out.

Used to finish off all procedures

Lists the procedure to be altered in the edit mode.

Keys used to move cursor while in edit mode.

moves to line start.

moves to line end.

removes the character and moves to the left.

deletes the character below the cursor.

opens up a space in the procedure.

moves the cursor down a line.

moves the cursor back.
moves the cursor forwards.
moves the cursor up a line.

ends editing session.

ends editing session as well.

Used to leave edit mode.

25

Parameters

There is one feature of Logo which deserves a mention in an introductory chapter like this:
the ability to pass ‘parameters’.

These are a means of allowing a procedure to perform the same sequence of actions to

produce different results according to the numbers put in. For example the following
procedure can draw many different rectangles:

to rectarngle sdimi :dimZ2
repeat 2 [fd :diml vt 3@ fd tdimd rt 9]

end

Procedure RECTANGLE

FIGURE 1.8

If you now type:

rectangle

you will get an error message. This is because RECTANGLE is expecting you to give it the
numbers corresponding to :diml AND :dim2. Try typing:

rectangle SG 100

This time a rectangle will be drawn. Now try:

rectangle 70 120

A larger rectangle is drawn. The parameters, i.e. the numbers given, are used wherever the
appropriate variable name appears within the procedure — in this case :dim1l OR :dim2.

As you read through this book, you might feel that some of the procedures given could be
improved by the use of parameters, or that the jobs might be better done with different
programs: well, there’s no harm in trying! Have a go! The programs as they stand have been
written so that they can be relatively easily understood; once they make sense to you, they
may well benefit from any changes and improvements you can think of, and of course you
can then tailor them to your own specific requirements.

26

Chapter 2

Part 1

Displaying Data

Having got to grips with some Logo basics, let’s now consider a more serious use for Logo’s
abilities. Imagine a user wished to display some information visually in the form of a
HISTOGRAM or as a PIE CHART.

Now since these procedures might prove useful you will need to save them on discs for

future use. If you are using an 8256 or an 8512 computer, turn to Appendix 3 to find out how
to format discs. If you are using a 6128, the method to use is described below.

Disc Formatting
Well, as you may well already know you can save your Logo procedures on a disc. Now in
order to get a new disc ready to receive your procedures you will have to FORMAT it.

When a disc is FORMATTED, it is divided up into original tracks and sectors ready to
receive data. If your blank disc has not been FORMATTED, just follow the following

procedures.

1) Reset the computer by pressing <SHIFT>, <CTRL> and <ESC> simultaneously.
Then insert your system/utilities disc into the drive and type:

| cpm
2) When you see the message ‘A>’, type:

format

and this message will be displayed after a short pause:

Please insert disc to be formatted into drive A then press
any key

27

3)

4)

5)

6)

Now assuming you are using a single disc drive take the system/utilities disc out of the
drive and replace it with the side of the disc to be formatted uppermost. Make sure
that this disc is not write protected —i.e. make sure that the plastic tab covers the little
hole in the top left corner of the disc.

Hit any key and the formatting process will begin. During the formatting process, the
‘track numbers’ are displayed on the screen as it does it.

You will then get the message:

Do you want to format another disc (Y/N):
to which you answer by typing Y and then turn your disc over to side ‘B’ and follow

instructions by hitting any key, again making sure that the disc is not write—protected
so the computer can ‘write’ on it.

You are now ready to answer ‘N’ to the currently displayed question.

Now replace your formatted disc with your Logo disc and type

logo

If you prefer the original colour scheme, then the easiest thing for now is to do a complete
reset of the computer (KSHIFT>-<CTRL>-<ESC>>) and re-load Logo in the normal

way.

Having formatted your disc you are now ready to save your procedures. There is however a
problem: since you reset your computer you will have to type them in again! This should
not take too long and after a short while, your procedure list will look like this:

to circ

to pattern

to pattern2

to square

to rectangle :diml :dim2

With your formatted disc in the drive you are now ready to save your procedures. Now the
easiest way to do this is to say

28

save "lotl

o~

any name will do here

SAVE (save)

Will save the specified procedure or procedures onto disc. It will save the
entire contents of the workspace into the named file.

If you now type:

dir

DIRECTORY (dir)

This outputs a list of Logo file names.

The disc drive will hum and you should then see:

[lotl]

which indicates that file ‘LOT1’ has been saved onto the disc.

Now type
er "circ
er "pattern
er "pattern2
er "square

er "rectangle :diml :dim2

If you had wanted to empty the whole of your computer’s memory you could have simply
said:

erall

ERALL (erall)

This command will clear the computer’s memory.

Having done this, you will be ready to re-load your procedures from disc by saying:

29

LOAD (load)

This reads the named file from disc and puts it into your computer’s
memory.

load "lotl

as you do this you will receive the message:

circle defined
pattern defined
pattern2 defined
square defined
rectangle defined

Now if you want to make a change in one of the procedures, you can use the EDIT facility as
usual. So, change ‘circ’ to look like this:

o circ
repeat 20 [fd 1§ rt 18]
end

If you now want to put this and all the other procedures back onto disc, you might try

save "lotl

You will receive a message saying:

File lotl already exists

Which on the face of it means that you can’t alter any procedures saved on disc, unless you
always save the new versions under a different name. However, there is a Logo command
that will come to your rescue.

EDIT FILE (edf)

This will load a specific disc file onto the screen ready for editing.

30

Try typing
edf "lotl

Now wait for a few moments and the file will be loaded. Edit the procedures in whatever
way you wish and when you CTRL-C or ALT-C or EXIT, the new procedures will be
saved under the old file name.

Now if you wanted to make sure that nothing could overwrite your procedures you could
move the ‘WRITE PROTECT’ tab on the disc. However, you may consider these
procedures to be unworthy of the space allocated to them on disc and so you might like to
erase one or all of the disc files.

ERASE FILE (erasefile)

This erases a specific disc file.

e.g
erasefile "name
Try typing
erasefile "lotl
If you type

dir
you will see that this particular set of procedures no longer exists on your disc.
Let’s suppose we wanted a procedure to display a variety of values in the form of a

HISTOGRAM (bar chart). Now in order to store these values, variables have to be set. In
order to set a variable the Logo primitive

make

is used.

MAKE (make)

This assigns a value or text to a given variable.

31

For example, type:
make ;xx 3
(Don’t forget the open quotes)

The quote marks in front of the the chosen variable name tells Logo to consider the work as
an object rather than a procedure name.

Whenever you set a variable you must use this format.
After pressing Return type:
L XX

These dots tell us that whatever follows, followed by a space, is to be evaluated, in this case
the variable XX.

You could now say:

make "xx :xx + 6
e A 4
set variable xx to the current value of xx plus 6

Now type:
: XX
and there’s it’s new value.

Now try:

make "ww martin

Upon pressing RETURN to you will get an error message. It’s therefore obvious that we
can’t set a variable to a string unless we do something special.

Click the message and try this:
make "ww [martin]
Followed by:
TWW

As you can see, you can set variables to strings. We will be using this ability later in the
book. Don’t worry about the brackets for now.

32

Try setting a few variables by typing:

make "aa 90
make "bb 70/2
make "cc 50
make "dd 3 * 3
make "ee 100
make "ff 85
make "gg 23
make "hh 87.2
make "jj 43.75
make "kk 5 * 7

Now try typing:

fd :aa

or €ven

bk :cc * :bb

This will obviously be very useful when procedures are needed that will move the turtle any
number as specified by a variable value.

Consider the procedure called PLOT shown below in Figure 2.1

to plot

pu 1t 20 fd S0 rt 90 pd

fd 106G hk 100 rt 20 fd 1950 bk 150 1t 30
fd 2aa rt 20 fd 15 1t 90 bk faa
fd thh vt 90 fd4 15 1t 99 bk :hb
fd tcc rt 20 fd 15 1t 99 bk :cc
fd tdd vt 90 fd 15 1t 2@ bk 3dd
fd see r»t 90 fd 15 1t 90 bk :iee
fd 2ff rt 20 fd 15 1t 9@ hk :ff
fd fgg rt 9@ fd 15 1t 99 bk :=gg
fd sthh rt 20 fd 15 1t 3@ bk thh
fd 2jj rt 2@ fd 15 1t 90 bk 23
fd tkk rt 9@ fd 15 1t 39 bk kk
end

Procedure PLOT

FIGURE 2.1

33

The first line of this procedure will move the turtle, then the second line will draw the X and
Y axes within which the histogram will be plotted. Having completed this line, the turtle
will have drawn the two lines shown below in Figure 2.2.

Axes
FIGURE 2.2

Now I’ve chosen 15 as the width of the ‘bars’ in the histogram and each of the next ten lines
in the ‘plot’ procedure simply tells the turtle to

1) Move forward a certain number of units;
2) Turn to the right;

3) Move forward 15;

4) Turn to the left;

5) Go back a number of screen units.

Having typed in the ‘plot’ procedure and having previously set ten variables to different
values, simply type:

cs plot

and your screen should look similar to the one shown below in Figure 2.3

A Histogram

FIGURE 2.3

34

Now how about a PIE CHART to visually display the same data?

How about making the chart one hundred screen units in diameter?

Well you could say:

Question:

Answer:

Question:

Answer:

Question:

Answer:

What's the circumference of a 100 unit diameter circle?
3.142 X 100

How many sides should this ‘circle’ have?

Let’s say 30.

What’s the procedure?

to circ

pu

fd 50

rt 90

pd

repeat 30 [fd (3.142 * 10@) / 30 rt 360 / 30]
end

Type it in and try it out!

As you make greater use of your Logo, you will discover that there are four sectors

to the screen as shown below in Figure 2.4

+¥
X +VE X +VE
Y-VE Y +VE
origin
-X O +X
X-VE X +VE
Y -VE Y-VE
-Y

Screen Sectors

FIGURE 2.4

35

Of one thing you can be sure, however, and that is that whenever you type ‘clearscreen’ the
turtle will be placed at that point of the graphics area where X and Y equal zero.

Clear the screen and type:

circ
Now type:
clean
CLEAN (clean)

This Logo command will erase the graphics screen without affecting the
position of the turtle.

It’s also a useful feature of Logo that the turtle’s position can be controlled in an absolute
way as well asin a relative way which is all that has been happening thus far. To position the
turtle in a specific screen location, you must make use of the command:

SET

Now there are many uses of ‘SET” covering graphics, colour etc. At this point in this book
we shall consider three of these uses.

set x
set vy
setpos

SET X (setx 10)

This command, followed by a number, will move the turtle horizontally to
the specified X position.

SET Y (sety 30)

This command, followed by a number, will move the turtle vertically to the
specified Y position.

36

SETPOS (setpos [10 30])

This command, followed by a coordinate list of two numbers, will move the
turtle directly to the specified position.

Now, if you remember, we were about to construct a PIE CHART. Now consider this
procedure:

to pie

pu setpos [-S® ~-50] pd
circ

pu setpos [-5© -50]

pd fd S5@ bk 50

make "total faa + :bbh + icc + 2dd + :ee
+ :ff + 2gg + :thh + 2jj + fkk
rt (360 / :total) * taa fd S0 hk S0
rt (360© / :total) # thbh fd 5@ bk 5@
rt (J&@ / :total) * scc fd S50 bk S50
rt (360 / :total) * :dd fd S0 bk 50
rt (360 / ttotal) * s1ee fd SO hk S@
rt (36@ / :2total) * :ff fd 56 bk S50
rt (360 / ttotal) *® 1gg fd SS9 bk 5@
rt (360 / :total) * thh fd 5@ bk 50
rt (36@ / :total) * :jj fd S@ bk S0
rt (366G / :total) * tkk fd 50 bk 5@
end

Procedure PIE

FIGURE 2.5

The first line of the procedure positions the turtle and the second line draws a circle of fifty
screen units radius. Line three lifts the pen and places the turtle in the middle of the circle
whilst line four puts down the pen and draws the first line. A variable called TOTAL (any
name will do) adds up all the values of the various variables and the last ten lines turn the
turtle through a proportion of 360 degrees equal to the variable value and then draw the
other lines.

Try it! Type in
cs pie
Not very good, is it? This is because the centre of the circle isnot actually at [-50-50].Itis a

little way to the right of this point because the turtle begins drawing it half a line before its
top—most point. See Figure 2.6 below.

37

T~

Turtle begins drawing here

w8 X
[-50 -50] ™ Actual centre of the circle

Why The Circle is Incorrect

FIGURE 2.6

This is easily fixed by adding a line after the RT 90 in CIRC:

bk (3.142 * 50) / 30

If T were to choose between the two presentations of data I think I prefer the histogram,
however.

However, you are now in a position to change the variable values and use either the
histogram or the pie—chart to visually represent the data.

Part 2

Using Random Numbers

Logo can, if you want it to, select a RANDOM value for a variable:

RANDOM (random)

This command will output a random whole number from zero to one less
than the input number.

Before you can use this, you need to know how to get it to print its results on the dialogue
screen. To do this, the command PRINT is used:

38

PRINT (pr)

This command causes Logo to write text onto the screen.

Try this command:

repeat 1f [pr random 5]

and you will see a selection of the integers 0 to 4 inclusive printed on screen.
Or, you could try:

cs repeat 100 [fd random 10§ home rt random 360]

MMM! Quite an interesting ‘STARBURST".

HOME (home)

This command returns the turtle to the position [0 0] where both X and Y
are zero at the centre of the screen; it also places the turtle’s heading North (0
degrees or upwards).

On the more serious side, let’s make use of ‘RANDOM'’ in a technique called ‘MONTE
CARLO ANALYSIS’ which demonstrates a statistical use of random numbers; as you
know, statistical evidence is at the root of lots of business decision—making techniques.

In this simple analysis, consider the following problem.

100

100

The Simple Problem

FIGURE 2.7

39

In Figure 2.7 above you are given a square of known dimensions: in this case it’s 100 screen
units square.

Now imagine a randomly sized square has been drawn in the middle of the known square
and your job, without using any form of tape or rule or similar measuring device is to
accurately gauge the area of the inner square.

Here’s a possible solution using random numbers.

First of all divide the large square into smaller squares like the one shown below in Figure
2.8

[y

—_ N WALV 0O O

012345678910

The First Part Of The Solution

FIGURE 2.8

Now you can see the X and Y coordinates divided into 10. (You can also assess the side
length and therefore area of the square but never mind).

Now pick 100 pairs of random numbers, each describing a coordinate position.
Whenever a coordinate falls within the small square make a variable ‘IN’ increase by 1.
Now at the end of this you will find that you have approximately 25 IN’s and therefore

approximately 75 outs. This means that the area of the small square is about 25% of the area
of the large square. Thus it has an area of

total area X no of squares in
no of trials

1 X 1§ X 25
108

Which is 25 square divisions.

Before you consider a procedure to draw a randomly sized square inside a square
measuring 100 x 100 units, consider a couple of Logo primitives.

40

TURTLEFACTS (TF)

This command outputs a list that describes the turtle’s current position, its
heading, pen state, pen colour and whether or not you can see the turtle.

e.g

tf
[# 0 297 PD 1 TRUE]

X positionﬂ flfen dov:n\TVt “‘TRUEF’ if turtle visible

Y position Heading Pen colour

TYPE ‘TF’ then move the turtle and see what difference it has made to the information in
the brackets.

Now type:

item 2 tf

ITEM

This command, when followed by an input object, will output the required
element of the input object.

You should receive the CURRENT Y position of the turtle.

Now try:
make "qq 5

item :qq tf

and you will be told that fifth item of TF is 1. Try:

item :qq "martin

and you will get:
1

Now you can move the turtle and, without knowing where you have moved it to, you can
find its current location.

41

Back to the Monte Carlo Analysis:

Consider the procedure ‘DRAW’ shown below in Figure 2.9

to draw
cs pu setpos [(S0 50]
make "rr 26 + random 31
setx © + 59 ~ irr pd
fd irr rt 9@ make "x item 1 tf
fd srr # 2 rt 90 make "ux item 1 tf make
"yy item 2 tf
fd srr # 2 rt 30 make "y item Z tf
fd srr * 2 rt 9@ fd yr
pu home
end
Procedure DRAW

FIGURE 2.9

I shall now briefly describe the function of each line.

cs pu setpos [50 58]

This will clear the screen setting the turtle at the origin where the X coordinate=0 and the
Y coordinate=0, then setting the turtle at a position where X and Y are 50.

make "rr 20 + random 31

This will pick a random number between 20 and 50 inclusive and set a variable called ‘RR’
to the randomly picked value.

setx § + 50 - :rr pd

This command will move the turtle from its current position:

¥
50 [presonsmmmmms A
X : X
50
=
FIGURE 2.10

to a position along the X axis where X=50 — :RR. It will then put the turtle’s pen down.

42

X X

-Y
FIGURE 2.11

fd :rr rt 90 make "x item 1 tf

This will draw a line :RR’ screen units in length, turn to the right and set a variable ‘X’ to
the current X coordinate position of the turtle.

Y

wl

=Y
FIGURE 2.12

fd :rr * 2 rt 90 make "xx item 1 tf make "yy item 2 tf

This will draw a line twice “RR’ screen units in length, turn right and set values for the
resultant position of the turtle.

Y
XX o
XYY
-X X
-Y
FIGURE 2.13

43

fd :rr * 2 rt 90 make "y item 2 tf
Again this will move forward, turn right and set a variable Y to the current Y coordinate

position.
Y

X X

-Y

FIGURE 2.14

fd :rr * 2 rt 99 fd :rr
pu home

These last two lines will complete the randomly sized square and put the turtle in the
HOME position.

As you can see below, the ‘BIGBOX’ procedure will draw a box 100 units square around the
50,50 position at the centre of the randomly sized square. Later on, in the final calling
procedure, the variable ‘LENGTH’ is set to 100. For the time being, set it to 100 by saying:

make "length 100

to bigbox
pu setpos [@ @] pd
repeat 4 [fd zlength rt 98]

pu
end

Procedure BIGBOX

FIGURE 2.15

If you now call ‘DRAW’ and ‘BIGBOX’ you will have a graphics area something like the
one shown below in Figure 2.16, except that the inner box may be a different size.

44

i

The Effect of DRAW and BIGBOX

FIGURE 2.16
Now we must devise a procedure
a) to randomly locate the turtle;
b) find out where it is and increment a variable if it is inside the

randomly sized square.

Here are suggestions called:

locate
testl
test2

to do these two jobs.

to locate

pu

home setx random :2length + 1 sety random
tlength + 1

testil

end

to testl

make "xxx item 1 tf

make "yyy item 2 tf

if and (sxxx > ix) (sxux € xux) [testl])

end

to test2

if and (syyy € yy) (syyy > ty) [make "i

nosin + 1]

end

The Procedures for Jobs a) and b)

FIGURE 2.17

45

Now ‘LOCATE’ is quite straightforward. With the turtle in the lower lefi-hand corner of
the square (as a result of the ‘HOME’ command), it is then randomly re-located within the
big box. LOCATE will then go to the first test procedure called TEST1.

Now the first two lines of TEST1 will set variables ‘XXX’ and ‘YYY’ to the current X and Y
coordinates of the turtle as shown below:

XXX — -—

The Operation of TEST1

FIGURE 2.18

The third line of TEST1 makes use of the conditional primitivcs:

if
and
and
IF (if)
This will carry out an instruction list if its inputs are TRUE
e.g
if 6 >3 [print [yes]]
yes
AND (and)

This will output TRUE if all input expressions are true. Otherwise it will
output FALSE.

46

If you look at line three of TEST1 you will see that it tests a couple of conditions:

XY
YYY
XXX
e

The Conditions in TEST1

FIGURE 2.19

Now the condition asks:

IF AND (:XXX > :X) (:XXX < :XX) [TEST2]

TRUE TRUE

When both conditions are true, as they are in the above case, we can move onto the second
test, TEST2.

if and (:yyy < :yy) (:yyy > :y) [make "1
n:in + 1]

So if all 4 conditions have been answered with TRUE, we increment a variable called ‘IN’
by one.

If we repeat ‘LOCATE’ and, because they are tested within ‘LOCATE’, TEST1 and
TEST?2, one hundred times, the variable ‘IN’ will be incremented to a value that in
proportion to 100 will represent the area of the random square compared with the area of
the known square.

47

Now to carry out the necessary calculations with procedure called CALCAREA:

to calcarea

make "area ({{(flength * :2length) / stria
1s) * in)

make "actualarea irr # Irr # d

pr (se "estimated "area farea "sg. "unit
52

pr (se "actual "area tactualarea "“sq. "u
nits)

end

Procedure CALCAREA

FIGURE 2.20

Now you know that the area of the large box is 10,000 sq. units (100 x 100) and that
the number of IN’s will represent the relative proportion of the area of the randomly

drawn box.

ie.

LENGTHXLENGHXdots in random square

no. of TRIALS
w X :IN
100

or, as in our first example:

19X19 X 25
100

That gives the estimated area.

You know of course that the real length of the side of the randomly drawn square is twice
“RR’ and the real area twice “RR’ times twice :RR’ so you can compare the two with a final
message in the last two lines of the CALC procedures.

Lastly here’s the final super procedure:

48

to monte

cs

make "in ©® make "length 190 make "trials
100

pd diraw

bigbox

repeat :ftrials [locate]

calcarea

end

Monte-Carlo Procedure

FIGURE 2.21

Notice that within MONTE, the variables ‘LENGTH’ and ‘TRIALS’ have been set to 100.
If you wanted to, you could of course set these to different values, or even have RANDOM
values for them. Later on, you will learn how to set these values by means of an input whilst
the program is running (if you don’t happen to know already, of course). Meanwhile, why
not try different numbers and see what happens? Try to find the number of trials needed to
give a reasonable chance of getting the area correct to within 5%.

émonte

estimated area 9200 sq. units
actual area 3604 sg. units

Z

monte

estimated area 2000 sg. units
actual area 2916 sg- units

?

?monte

estimated area 2900 sq. units
actual area 2116 sg. units
Pmonte

estimated area 3300 sqg. units
actual area 3600 sg. units

?

A Few Sample Runs of MONTE

FIGURE 2.22

49

50

Chapter 3

Decision Analysis

Imagine you have a management decision to make, a decision that a great many people
have to make at least once or twice in their lives. It’s a decision that is made all the more
difficult because some of the factors that affect the decision—-making process are non—

quantifiable.

Let’s outline the problem: it centres around the choice of a new house from two
alternatives.

Now quite obviously there will be quantifiable, objective ‘facts’ regarding the two
properties that will affect the decision. However, there are also non—quantifiable subjective
factors that impinge upon the decision—making process, making coming to a decision more

difficult.

Now wouldn’t it be nice to be able to develop a small computer procedure to assist in the
making of decisions that involve both subjective and objective criteria?

The model chosen for us in this area is that of:

DECISION
ANALYSIS

Suppose you are trying to choose between two houses, A and B, and that there are a number
of factors affecting your choice. If this is the case your ‘problem’ will look like this:

Two alternative houses

"

factor A B
factor

factor
factor things that will affect the decision

factor

i

etc
Setting Out the Problem

FIGURE 3.1

51

Now to move the problem closer to a real world situation by elaborating upon some of the
‘factors’ shown above. Let’s assume the list might look like the one shown below where
some of the considerations that may affect our decision have been listed.

Factor

Cost price

Rates/year

Desirability of area
Availability of schools
Availability of shops
Availability of sports
Number of rooms

Size of garden
Distance from station
Attractiveness of house

A

14000
400

Some Factors Filled In

FIGURE 3.2

B

12000
300

As you can see from the above list, some of the factors are measurable in terms of cost and
the relevant information has been put in the table. Given this objective information, house
B books to be the best house to move to. However, the other considerations are equally
important and their effect may alter the decision to move to house ‘B’.

In order to carry out a computation and arrive at a decision, these subjective considerations
should be rated on a scale of 1 to 100. The lower the rating, the lower the ‘cost’: a high
number will indicate a high ‘cost’ (i.e. low desirability) rating. For example, both houses
might be fairly close to a school but house A might be half a mile closer to the school than
house B. In this case A might attract a rating of 50 as opposed to B’s 60.

Imagine now that, in conjunction with whoever else involved on this particular
management decision, you have arrived at the following ratings for the subjective criteria.

52

Factor

Cost price

Rates/year
Desirability of area
Availability of school
Availability of shops
Availability of sports
Number of rooms

Size of garden
Distance from station
Attractiveness of house

Ratings From 1 to 100

FIGURE 3.3

A

14
0.4
10
50
80
40
30
10
15
15

B

12
0.3
15
60

40
30
30
25
20

Now you must WEIGHT all the criteria. This weighting is carried out on a 1 to 10 scale
with a low number indicating least important and high number being an indication of great
importance. Of course any weighting can appear any number of times. With the agreed
weighting added, your table might look this this:

Factor A B Weighting
Cost price 14 12 8
Rates/year 0.4 0.3 5
Desirability of area 10 15 8
Availability of school 50 60 4
Availability of shops 80 40 1
Availability of sports 40 40 3
Number of rooms 30 30 9
Size of garden 10 30 10
Distance from station 15 25 6
Attractiveness of house 15 20 3
Weightings
FIGURE 3.4

Now the merit of house A will be given by:

(14)8 X (0.4)5 X (10)8 X (50)* X (80)! X (40)* X (30)° X
(10)10 X (15)6 X (15)3

whilst the merit of house B will be given by:—

(12)8 X(0.3)5 X (15)8 X (60)* X (40)! X (40> X (30)° X
(30)10 X (25)6 X (20)3

Now in itself the ‘merit number’ is meaningless, but it is useful to be able to compare the
two numbers. What you now have to say is:

merit A number
merit B number

If the result of this calculation is less than one, house A is the best choice and if the resultant
number is greater than one, house B is the obvious choice.

Let’s now devise a procedure that will:
1) accept factors from the user;
2) accept costs, RATES and WEIGHTS for the factors;

3) display the input information;
4) calculate the relative merits and recommend a decision.

53

Suppose we want to display the information in the form shown below:

Factor A B Weighting
A AA AAA AAAA
B BB BBB BBBB
C CC CCC CCCC
D DD DDD DDDD
E EE EEE EEEE
F FF FFF FFFF
G GG GGG GGGG
H HH HHH HHHH
J 5 J JJ

The Form Of Display Required

FIGURE 3.5

Now the first thing you could do is devise a procedure to get some information from the user
about the factors that affect the decision. You could for example make use of the
READLIST command:

READLIST (rl)

Upon receiving this command, Logo will wait for an input from the
keyboard before continuing

Just try typing:

rl
and nothing will happen until there is an input, followed by RETURN, from the user. That
input will then be displayed. It’s easy therefore to set a variable to any input from the user

by saying:

make "qq item 1 rl
This sets the variable ‘QQ’ to the first item input by the user.
Note also the use of:

print

Just to remind you, here it is again:

54

PRINT (pr)

This Logo command will display the input objects on the text screen.

e.g

pr "rat

rat

pr (rat roy girl)
rat roy girl

Thus you could say:

to info

ts ts pr [WHEN ASKED FOR FACTORS]
pr L]

pr [TYFE IN YOUR TEN FACTORS]

pro [

pir [WITH A SPACE BETWEEN EACH ONE]
pr L]

pr [THEM PRESS RETUREN]

B []

o [NOW TYPE YOUR FACTORS] make "qg rl
make "a i1tem 1 1gqg

make "h item 2 Iqgg

make "c item I fgg

make "4 item d4 gg

make "e i1tem 5 gy

make "t item & Sqgg

make "g item 7 fgyg

maks “h item & fgg

maka M) item ¥ igg

make "k item 10 1ygg

@yt
Procedure INFO
FIGURE 3.6
Clear the text by typing:
ct

Now type:

info

55

And your screen will look like the one shown below in Figure 3.7
WHEN ASKED FOR FACTORS
TYPE IN YOUR TEN FACTORS
WITH A SPACE BETWEEN EACH ONE
THEN PRESS RETURRN

NOW TYPE YOUR FACTORS
INFO’s Display

FIGURE 3.7

May I suggest that you respond by using the caps lock key and typing:

PRICE RATES AREA. SCH'L SHOPS SPORT
ROOMS GAR'N TRAIN HOUSE

Having done that, press RETURN.

We now need a procedure to display the information, but first, a procedure to set all the
variables, a, aa, aaa, aaaa etc. to zero:

to data

make "a @ make "aa ©® make "aaa @ make "a
aaa @

make "h @ make "bhh ©® make "hbb @ make "I
bk @

make "c © make "cc ® make "ccc © make "cC
ccc @

make "d @ make "dd @ make "ddd @ make "d
ddd @

make "e @ make "ee @ make "eee ® make "e
eee @

make "f @ make "ff © make "fff ® make "f
fff @

make "g @ make "gg @ make "ggg @ make "g
ggg ©

make "h @ make "hh @ make "hhh @ make "h
hhh ©

make "j ® make "jj @ make "jjj @ make "j

Jijjg @

make "k @ make "kk © make "kkk @ make "k
kkk @ Procedure DATA

erd

FIGURE 3.8

56

If you type in the above procedure and then type:

data

You will have set 40 variables to zero.

Now let’s consider the procedure to display the variable values. In order to do this, you will
need to utilise the Logo primitive SENTENCE.

SENTENCE (se)

This command outputs a list made up of the input objects.

to display
pr (se "factor

1] " £ 1" " llb " " n

pr (se fa
L1 " " : aaa
Py (se ih

1] b " ' = ’:l t' t' " " " " i

" " i 1 "

11} i " n "

.Fl T (' se = ' " " " " 11

n " " . cr c " " " L 1] n
;.3 T (’ s e 4 d " " n " 1"

" Li} L1

¥ ':ldd " " L} n n
p e (se] e n 1" 1" n" "
bt teee
pr (se f

e f f.f " n " LU "
]:l r (LX) u g " " L L1} "

Tt iggy

H ’,,‘ 1} " " L1} 13

¥ '.' '.' h i " n " n

" 11 " n n

" n " " L1}
n i " " "

" n 1"

" " " " [1]

pr (se
(1] 13} "
pr (se %
" " " :Jj,]
pr o (se Ik

L !: F_‘ L_ " 11} n n 1]

end

(1] i n "

n 113 n 11} : J' .j

" " L 1

"weight)
taa "
" raaaa)

thh "
" " ihhbh)
sCC
sgeeel
tdd "
"o :rdddd)
tee
" " teeee)

11 12 L 1 = f f 1

tffFF)
:gg
"t oEgggy)
thh "
" v thhhh)
I N B
thk
"oMorkkkk)

Procedure DISPLAY

FIGURE 3.9

57

If you now type:

data info

Then respond correctly to INFO. Then type:

display

your screen should look like the one shown below in Figure 3.10

Tdisplay
FACTOR
PRICE
RATES
AREA.
SCHYL
SHOPS
SPORT
FrociMs
GAR N
TRAIN
HOUSE

A B WE IGHT
] (73] v}
] @ %)
@ @ %]
@ @ @
% @ 7]
@ %)} i
@ in (%]
@] o
0] @ @
7] &)

DISPLAY’s Dispiay

FIGURE 3.10

Now for a procedure to collect the necessary information from the user in terms of costs,

ratings and weightings for each of the ten criteria.

Let’s call the procedure ASK and make it get some information from the user.

58

to ask
ct

pr [NOW GIVE ME SOME INFO']

pr L[]

pr- [TYRPE IN THE FIGURES FOR COST / RATIN

Gl

pr [FOR THE FACTORS]

pr L]

pr [WHEN THE FACTORS APPEAR

N3]

pro L]

pr [PRESS
pr (se a
pr (se th
py {(se fc

RETURN EACH TIME]
"for "A) make "aa
"for "A) make "hb
"for "A) make "cc

ON THE BSCREE

item 1 1
item 1 r1
item 1 vl

pr (se :d "for "A) make "dd item 1 rl
pr (se e "for "A) make "ee item 1 rl
pr (se :f "for "A) make "ff item 1 rl
pr (se g "for "A) make "gg item 1 rl
pr (se th "for "A) make "hh item 1 ¢l
pr {(se j "for "A) make "jj item 1 rl
pr (se ik "for "A) make "kk item 1 r1

First 19 Lines of ASK

FIGURE 3.11
You can see that the procedure structure is quite simple. First of all it will print some
messages on the dialogue screen after it has been cleared, and then there are a series of lines

that will:

1) print the factor for which the information applies;
2) set the variable to the input from the user.

For example:
pr (se :c "for "a) make "cc item 1 rl

This will print on the screen

area for a

To which the user will respond with an input of

10 <RETURN>
The second part of the line will set the variable CC equal to 10.

You can see that the procedure will display each factor in turn and await an input from the
user in terms of its cost or RATING.

You must of course do the same for house B: here’s a suggestion for the remainder of the
ASK procedure:

59

ct pr [NOW FOR B]J

pr (se ta "for "B) make "aaa item 1 1l
pr (se b “"for "B) make "hbh item 1 r1
pr (se :c "for "B) make "ccc item 1 rl
pr (se :d "for "B)> make "ddd item 1 1
pr (se e "for "B) make "eee item 1 vl
pr (se :f "for "B) make "fff item 1 rl
pr (se g "for "B) make "ggg item 1 ¢l
pr (se th "for "B) make "hhh item 1 11
pr (se =j "“for "B) make "jjj item 1 rl
pr (se ik "for "B) make "kkk item 1 »l
arnid

A Suggestion For The Rest Of ASK

FIGURE 3.12
Again, each line is carrying out a similar task.

Of course the computer must store the various weightings for each of the factors and so,
again, here’s a suggested procedure to collect the necessary information.

to weight

ct

pr [NOW INPUT THE WEIGHTIMGS AS AZKED]
pr (se sa “"weight "please) make "aaaa 1t
em 1 »r1

pr (se th "weight "please) make "bbhbb it
em 1 rl

pr (se fc "weight "please) make "cccc 1%
em 1 1

pr (se 2d "weight "please) make "dddd it
em 1 rl

pr (se e "weight "please) make "eese 1t
em 1 rl

pr (se :f "weight "please) make "ffff i%
em 1 rl

pr (se g "weight "plesse) make "gggyg 1%
em 1 rl

pr (se th "weight "please) make "hhhh 1t
em 1 rl

pr (se 23 "weight "please) make "jjiJ it
em 1 rl

pr (se sk "weight "please’ make "kkhkbk it
em 1 rl

end Procedure WEIGHT

FIGURE 3.13

60

Now having run ‘INFO’, run ‘ASK’ and ‘WEIGHT’, run ‘DISPLAY’ and your screen will
look like the one shown in Figure 3.14.

1

SPORT weight please

>

ROOMS weight please

)

GAR'N weight please

1o

TEAIN weight please

6

HOUSE weight please

?display

FACTOR A B WEIGHT
PRICE 14 12 3
RATES @ad 0.3 =
AREA. 1@ 15 8
SCH'L 17 &0 g
SHOPS =) 4o 1
SPORT 4@ 4 s
ROOMS 3@ 3@ £
GAR*N 19 30 19
TEAIN 15 z &

HOUSE 15 20

p

The Display After INFO, ASK, WEIGHT & DISPLAY .

FIGURE 3.14
Now for a procedure to carry out the necessary calculations.

Remember that to calculate the merit of house A, the maths will look like this:

:AA ~ :AAAA X :BB ~ :BBBB X :CC ~ :CCCC etc.

Rating To the power of Weight

So the rating of the first criteria is set to the power of it’s weight and this is multiplied by the
rating of the second criteria which has been set to the power of it’s weighting...and so on.

Now we have a small problem in that t or ~ or‘to the power of is not available in Logo.

61

For example, in another language, you might be able to say:
PR2 t 2
and get the answer 4 (which is 2 to the power of 2 or 2 squared)

However you will get the answer:

“I don’t know how to t 2”
This means that a way around this problem must be found.

Consider the procedure ‘POWER’ shown below:

to power 1az :p

make "cl a2

repeat 2p — 1 [make "aZ a2 ¥ :1cl]
make "al :a

end Procedure POWER

FIGURE 3.15

The ‘make “cl :a2’ line is there because you cannot pass values out of a procedure using the
parameters: they vanish as soon as you jump out, so another variable must be used. Now try
this:

power 2 6
and you will receive the answer of 64 which is 2 to the power of 6.
Now if you look at ‘CALCI’ you will see that in each line POWER has been used.

to calcl

power faa :aaaa make "ma fal

power :hb kbbb make "mh :al

power fcc Scccec make "mc fal

power :dd :dddd make "md :al

power ftee :teeee make "me fal

power :ff :ffff make "mf :al

power :gg 2ggggy make "mg fal

power :hh :hhhh make "mh :al

power 233j :2jjji make "mj :al

power fkk 2kkkk make "mk :al

make "merit.a Ima ¥ :mb # Imc # imd ¥ im
d ¥ tme ¥ :mf % Img # :mh % :mj ¥* :imk

end
Procedure CALC1

FIGURE 3.16

62

In the last line of CALC1 all the ‘powered up’ values are mutliplied together to give a
variable ‘MERIT.A’.

Exactly the same procedure is followed in ‘CALC2’ resulting in a variable value

‘MERIT.B’.

to calcz
power :aaa
power :hhbh

power fccc

power :ddd

power seee

power Sfff

power :ggg
power :hhh

power 233jJ

power :kkk

taaaa make
tbhhkh make
tcccec make
tdddd make
teeee make
2fFFFf make
tgggy make
thhhh make
tijjj make
tkkkk make

make "mevrit.h fma ¥ :
d ¥ Ime *

end

tmf

Img *

"ma
“mb
"mc
"md
"me
"mf
llmg
"mh
llmJ'
“"mk
mb *
tmh

tal

tal

tal

tal

tal

sal

tal

tal

tal

tal

fmc ¥ md # =Im
¥ Imj * :=mk

Procedure CALC2

FIGURE 3.17

The last part of the calculations are carried out by the ‘DECIDE’ procedure shown below.

to decide

make "best

if thest
if thest
if thest
end

Z

tmevit.a /
1 [pr (se
1 [pr (se

tmerit.hb
"choose "h))
“"choose "a)]
1 [pr [I don’t know']]

Procedure DECIDE

FIGURE 3.18

Lastly you can of course embody everything in a procedure called ‘CHOOSE’ outlined

below. TRY IT OUT.

63

to choose
data
display
info

ask
display
weight
display
calcl
calcz
decide
end
Zcopyoff

Procedure CHOOSE

FIGURE 3.19

If there are fewer than ten factors you can simply put in the number 1 during ASK and
WEIGHT and the answer will not be adversely affected.

64

Chapter 4

Sales Forecasting

Just imagine you are the sales manager of a company which buys and sells a quarterly
magazine, say on train spotting.

Also assume that to have customers that can’ be supplied means that there is a loss to a
competitor and that therefore stocks of magazines left over can’t be sold at a later date
either. Now consider the following conversation between the managing director and the
sales manager of the company:

MD “What on Earth’s happening? You’ve been with us for over three years now
and you still can’t get your sales forecasts right. What have you to say for

yourself?”

SM “Well I try but I'm very rarely successful.”

MD “You’re never successfull Just look at these figures. What method do you
use, GUESSWORK?”

SM “Well, no, I use the figures from the previous sales period.”

MD “It’s not good enough! Every period we either lose sales through being
understocked or we throw money away by being overstocked. Now get your
house in order or you’re fired!”

Well, as you wander back to your office you might be thinking to yourself:

WHAT CAN I DO?

The answer of course is to analyse and change your method of forecasting so that it fits both
present and hopefully future patterns of sales.

The first thing to do is to consider some past data and, as luck would have it, you have kept a
record since the start of your employment with the company. (Something your predecessor
didn’t do). Here are the facts:

Well, when you look at your records it looks as though no thought at all has gone into the
forecasts. No wonder the MD is irate. Just look at those errors:

error = actual sales minus forecast

65

PERIOD SALES FORECAST ERROR

1 100 0 0

2 180 100 -80
3 150 180 30
4 130 150 20
5 210 130 -80
6 160 210 50
7 150 160 10
8 240 150 -90
9 200 240 40
10 180 200 20

Forecasting Errors

FIGURE 4.1

Now you might say to yourself:
“I think I'll get a forecasting system computerised.”

“I think I’ll design a system that can be used to make forecasts for anything from sales to
manufacturing scrap rates, and from absenteeism rates to soap consumption.”

Having decided that, you might like to start programming:

First of all let’s assume you want to manipulate say 40 variables: that’s PERIOD, SALES,
FORECAST, and ERROR multiplied by 10 periods. You will remember from Chapter 3
that a fairly easy way to set variables was by setting them all to zero in an initial procedure.

Here’s a suggestion called ‘MARKET’

to marvket

make "a O make "aa ® make "zaa ?® make
aaa 9

make "h @ mabe "hh @ mabke "bbh © make "h
bbb @

Lk

make "c @ mabe "o © make "ccoc @ make &
cce ¢
make "d @ make "dd 9 make "ddd ©® make "d
dAded 9
mate "o @ make "ee @ make "eee @ make "e
ees @
make "f @ make "ff ©® make "fff @ make "f
ftff o

66

make "g @ make "gg ® make "ggg
ggy @

make "h @ make "hh @ make "hhh
hhh @

make "Jj ©® make "33 @ make "33
jid o

make "k @ make "kk @ make "kkk
kkk @

ernd

Procedure MARKET
FIGURE 4.2

You can now arrange to display those values at specific screen locations in a procedure

called ‘DISPLAY’

to
ct
pr (se

display

" "period
“Yerror)
{ge " " 31a

" (1] " " H "

n &

Pr
taaa
pr (se
: t‘bt‘ L1} " 113 " " "

pr (: sg " M zg o now
fccce [T T T T T 1}
.p T (se L ' H d " 1
tddg " o owouon
pr (: sg " " g # ®

n " " n " "

ieee

pr (: se "M o= [T
sfEFF M ow owonwon
pr (.' sg "M " = g Hoowu

:ggg (N T TN T I T N | N
pr (se " " tp o mow
thhh » n v v n on
pr (:SE "onoe J [T T

: ‘] JJ' " 111 n " " "
pr (se

: h: ": ‘_:: i1} " i 11 " "

end

" M"gales

" laaaal

i L1} L1} a

" ihhbbh)

L1] 11 " L1} : r C
% LEETE)D

[1] HL] " [} : i‘ll"{
"oadddd)

[1} 11} " 1n : E\P
" teeee)

11} " " " .: f f

¢ SEPREY

Yotgggg)
" L1 il a : 2.= l.‘

Y shhhh)
Sl I
" i n : ‘L' “:: (1]

" otkkkk)

§dd

Procedure DISPLAY

FIGURE 4.3

6]

=

maie

make

make

make

B

The first line makes use of the command:

CLEARTEXT (ct)

This command erases all the text from the LOGO DIALOGUE area and
positions the text cursor in the upper left—hand corner.

The rest of the procedure simply prints a series of sentences made up of words and spaces or
variable values and spaces.

If you now call up:

market

followed by:

display

Your screen will look similar to the one shown below in Figure 4.4.

T"market

Tdisplay

veriod sales f.cast error
@ @ @]
@ @ 0] @
@ 7} @ 7]
@ %] @ 0]
5] @ @ @
@ @ @ @
@ (0] 1] 7]
@ @ @ 0]
4] @ @ @
@ 17 D o

Initial Display
FIGURE 4.4
Now for a procedure that will invite a response from the user. Let’s also make our

procedure ‘menu driven’, which means that the user will have various choices of action
open to him/her. I’'ve chosen to call the suggested procedure ‘MENU’.

68

to menu

display

pr [PLEASE TYPE 1 IF VYOI WISH TO PUT]

pr [IN A SALES FIGURE] pr []

pr [OFR TYPE 2 IF YOU REGUIRE A FORECAST]

pr [

pr [OR 3 FOR ERRORS TO BE CALCULATED] pr
L]

pr [OR 4 IF YOU WISH TO EXIT THE PROGRAM

]

make "choice item 1 r1

if fchoice = 1 [ask]

if tchoice = 2 (forecast]

if choice
if fchoice
end

3 [errors]
4 [pr [OK] display]

it N
L

Procedure MENU

FIGURE 4.5

The first line simply calls the DISPLAY procedure while the second, third, fourth and fifth
lines print a series of messages.

The sixth line waits for an input from the user. This input will be the number 1, 2, 3 or 4
according to the user’s requirements.

In lines seven, eight, nine and ten the input is considered and an appropriate procedure
called up.

Let’s assume the user wants to input some information and so presses ‘1. At this, the
program will move to the procedure called ‘ASK’.

to ask

pr [WHICH SALES PERIOD?]

pr [TYPE —-1906 TO DISCONTINUE]

make "which item 1 rl

if fwhich = —-10@ [stop]

looki

pr [PUT IN SALES FIGURE FOR PERICD]
make "input item 1 rl

lcok2

end

Procedure ASK

FIGURE 4.6

69

The first two lines of ‘ASK’ ask for some information and give the user a chance to
discontinue the whole program if required by the use of

STOP (stop)

This will stop the execution of the current procedure and will return to the ?’
prompt or to the calling procedure.

In line five, having previously made sure that user does not wish to exit the procedure, the
input is analysed in a procedure called ‘LOOKT’.

to lookl
if 2which
if fwhich
if swhich
if fwhich
if swhich
if swhich =
if swhich
if twhich
if twhich
if twhich =
erid

(make "a 1]
[make "k 23]
[make "¢ 3]
[make "d 4]
[make "e 5]
[make "f &]
{make "g 7]
[make "h &
[make "j 9]
? [make "k 1@]

i
= OO0 NP AR W R -

ol

it

Procedure LOOK1

FIGURE 4.7

As you ca see, all that happens in ‘LOOKI’ is that an instruction list (the commands in the
square brackets) is carried out according to the input by the user. Thus, if in answer to the
message:

‘WHICH SALES PERIOD?’

the user says:

6

the variable F will change from zero to six.

Continuing with the ‘ASK’ procedure, another message will now appear asking for the sales
value associated with the previously input number. After setting the input variable called
:INPUT, a procedure called ‘LOOK?2’ is called up.

70

to lookZ
if swhich
if twhich
if swhich
if :which
if :which
if swhich
if swhich
if fwhich

1 [make "aa :finput]
[make "bh :input]
(make "cc finput]
[make "dd finput]
[make "ee finput]
[make "ff finput]
(make "gg finput]
[make "hh finput]
if swhich {make "jJ finput]
if :twhich 1@ [make "kk sinput]
erasefile "sales

save "sales

end

o

LI 1 (|
RUN s B e A1 =0 I N

I}

Procedure LOOK2

FIGURE 4.8

This procedure will look at the current value of WHICH and change a variable to the
current INPUT value.

Now for the last two lines of LOOK2. You found out in Chapter 2 that, assuming you have a
formatted disc in your drive, if you type:

save "sales

the whole of your computer’s memory of variables and procedures will be saved onto the
disc under the filename ‘SALES’. See that it works by trying it now.

Now if you were to type:

erasefile "sales

All this information would be lost from the disc (don’t try that now: file ‘SALES’ will be
needed later).

Now in our LOOK2 procedure the old information contained in our current ‘SALES file is
erased and the whole of our computer’s current memory, including the latest inputs, is
saved in the newly created sales file.

So far your procedures will be as follows:

MARKET Sets all variables to zero
DISPLAY Displays all variable values

MENU Calls DISPLAY then asks the user what to do. If the choice
is ‘1’ the procedure ‘ASK’ is called.

ASK This procedure asks for information from the user regard-
ing PERIOD number and SALES figures.

LOOK1 Sets the period numbers.

LOOK2 Sets variables to various sales figures; the procedure then

wipes out all the old information and saves all the latest.

71

Let’s now use our procedures and check that the system for the input of sales information
works.

Try typing the following (if you already have a file called ‘SALES’ on the disc, don’t bother
with the first instruction):

save “sales
market
menu

Wish to put in sales figure —s 1

period number 1
sales for period 100 Disc drive hums assuming you’ve
something called sales already
on the disc for it to erase.
MENU
1
10
180 HUM from drive
MENU

Screen After Some Data Entry

FIGURE 4.9

Now put in the rest of the relevant period numbers and associated sales figures shown
below in Figure 4.10.

period sales f.cast error
1 1@ 1 @
2 180 @ @
B 150 @ 7
il 1Za] 1)
7 210 7] (6]
é 1460 7] @
£ 15a @ @
& 240] @
9 206 &) &
19 130 7] G
Sales Data
FIGURE 4.10

Well, thus far you haven’t done much to impress your managing director, so let’s suppose
you might at any time wish to make a forecast based upon the DATA in the system. (i.e.

that saved in your sales file).
Type:
erall

72

to erase any procedures and variable values from the workspace.

Now type:
load "sales

You will see all the procedures re-defined. Variables will also be restored.

Now just type:

display
to make sure.

Let’s now assume you want to make a forecast. Well, you would type:
¥ y yp

menu
Followed by:

‘2’ But don’t do that because you havn’t yet defined the ‘FORECAST’ procedure. Take a
look at a proposed procedure below:

to forecast

ct

display

pr L[]

pr [WHICH METHOD WOULD vould LIKE TO EMPLQO

Y?] P []

pr [TYPE 1 FOR LAST SALES PERICOD METHOD]
pr [

pr [OR TYPE 2 FOR THE SIMPLE AVERAGE MET
HOD] pr L[]

pr [OR 3 TO USE THE MOVING AVERAGE SYSTE
M]

make "wish item 1 rl

if swish = 1 [forecastl]
if fwish = 2 [forecastl]
if twish = 3 [forecastZ]
erd
Procedure FORECAST
FIGURE 4.11

Now being a clever sales manager you have done some research and discovered that you
could start making forecasts in three ways:

1) by taking the last period sales;

2) by using a simple average;
3) by using a moving average.

73

There are others but you have chosen to start with these.

Now you know that your managing director is none too pleased with your efforts with the
‘last period sales’ method, but, with a little adjustment at a later date, it might be of some
use so let’s consider the ‘FORECAST]1 procedure.

to forecasti
make "hbh faa
make “ccc ihh
make "ddd :fcc
make "eee Idd
make "fff :ee
make "ggyg :ff
make "hhh fgg
make "jJji thh
make "kkk 3]
end

Procedure FORECAST1

FIGURE 4.12

As you can see this simply rearranges the variable values so that each of the variables BBB,
CCC etc. is made equal to the SALES for the previous period.

Now run:
menu
and answer: 2
followed by: 1 to the question ‘WHICH METHOD?’
Try typing:
display

and there will be all the forecasts using the ‘LAST PERIOD SALES’ method displayed on
your screen.

Now for the ‘SIMPLE AVERAGE’ method of forecasting. The forecaster will take all the
sales figures for the previous periods to date, add then all up and divide by the number of
periods.

74

to forecast
pr [WHICH PERIOD FORECAST?]
make "wish2 item 1 rl

if twish? = 2 [make "bhh :1aa)
if twish2 = 2 [make "ccc round (:aa + ik
by /4 2]

if swishz d [make "ddd round {(taa + :h
b + 2cec) / 3]

if swish2 S [make "eee round {(faa + b
b+ scc + ::dd) / 4]

if swishZ & [(make "fff round (faa + ik
b+ 2cc + 2dd + ee) / 5]

if fwish2 7 [make "ggg round (faa + b
b+ tcc + :dd + fee + :ff) / &]

if swishZ {make "hhh round (faa + :h

It

so | s |} me fl ee | owe |

bk + 2cc + 2dd + tee + :ff + :gg) / 7]

if fwishZ 7 [make "3jjj vround (taa + :th
b+ fcc + i3dd + fee + :ff + Igg + ihh)

/5 3]

if ftwish2 = 1® [make "kkk round {(iaa + =

hh + fcc + 2dd + tee + :ff + fgg + thh
+ 233y / 7]
end

Procedure FORECAST2

FIGURE 4.13

So with the above procedure, you can see that a question is asked of the user and if, for
example, the user inputs the number ‘5’, which means a forecast for period 5 is required, the
computer will look down the list of conditions and when it comes to 5 it will say:

Make the variable “EEE=(:AA + :BB + :CC + :DD)
4

In this procedure use of ‘ROUND’ has been made.

ROUND (round)

This will output the input number to the nearest whole number.

This is because we don’t want forecasts in ‘parts of products’.

75

Now type:

menu
2
2
5
menu

You will see your 140 forecast for period five. As it happens, this is a long way from the
actual sales for that period of 210!

Now continue to call up ‘MENU’; answer the questions and get forecasts for each period
two to ten inclusive using the simple average method. Notice that as a forecast for period
two the period one sales have been used.

By the end of this your screen will look like the one shown below in Figure 4.14; you can
press 4 to continue your procedure development.

period sales f-cast ervor
1 100 17 @

z 1co 100 @
= 156 14 %)
dq 13a@ 143 @
5 21@ 140 @
& 160 154 @
7 158 155 @
8 2d0 154 @
e 200 165 @
1@ 12a 187 @

Simple Average Forecasts

FIGURE 4.14
You can see from this that there are still some fairly large errors, so why not consider

another method? Let’s try a method that’s somewhere between the ‘last period sales’ and
the ‘simple average’. Consider for example a ‘moving average’ method.

76

Period Sales Forecast

100
180
150
130
210
160
150
240
200
180

)7

=0 00 N O\ W\ W N

o

etc.

Moving Averages

FIGURE 4.15

Now the method: the forecaster chooses how many periods to use, in the example three
have been chosen, then the sales for each of the periods are added together and divided by
the number of periods. This will then give a ‘moving average’.

For example, a forecast for period 7 will be:

sales for period 6 + sales for period 5 + sales for period 4
3

to forecasts3
pr [WHICH PERIOD FORECAST™]

pr [

make "aaa ® make "aaaa @
make "bhb ©® make "bhbh ©
make "ccc ® make "cccc @
make "wish item 1 r1
if twish = d [fore]
if ftwish = 35 [fore]
if twish = & [fore]
if ftwish = 7 [forel]
if fwish = &8 [fore]
if twish = 9 [fore]
if twish = 1@ [fore]
end
Procedure FORECAST3
FIGURE 4.16

77

If you look at ‘FORECAST?’ you will see that is starts off with the usual question. The
forecasting and error variables for the first three periods are then set to zero. Thisis because
the first period for which a forecast can be made is the fourth one and you won’t want any
previous forecasts or errors cluttering up your screen if you are using the moving average
method. The forecaster, having answered the question with the sales period for which a
forecast is required, is moved to the procedure ‘FORE’ as shown below.

to fore

if fwish = d [make "ddd round (faa + hh
+ ICcCy B |

it twish = 5% [make "eee vround {(:hh + icc
+ tdd) 23

if fwish = & [make "fff round {(2cc + :dd
+ iee) =]

if twish = 7 (make "ggg vound (:idd + tee
+ 1ff) 33

if fwish = 2 [(make "hhh round (tee + :ff
+ :gg) =]

if fwish = 9 [make "jjij vound (:ff + :1gg
+ thh) 2]

if fwish = 19 [make "kkk round (igg + h
h o+ 333> /7 3

el

Procedure FORE

FIGURE 4.17

This is quite a straightforward averaging job and needs no explanation.

Call ‘up ‘MENU’ and answer all the questions using the third forecasting method and

eventually your screen will look like this:

78

period

D) I = WU O B

H ~.J s:y

i

- g

(e

sales f
iae
1586
150
120
Z21@
160
150
2D
200
120

i

-cast
3

@

@

1d3

o

163
1&£7
173
123

137

eryor
@

17
@

O OO OS]

& 8

Moving Average Forecasts

FIGURE 4.18

Thus far your ‘procedure plan’ looks like this:

MARKET

DISPLAY
‘_l calls
MENU

calls

ASK

calls

calls

calls —— FORECAST

LOOK1 ERRORS —=-

calls

calls

LOOK2

calls

— FORECAST1

calls!
—> FORECAST?2

calls

— FORECAST3 —— FORE

Program Flow So Far

FIGURE 4.19

The ‘ERRORS’ procedure is now needed. This is quite straightforward. As you can see
from the suggested procedure, the errorisonly calculated if both a sale has been made (even
if it’s zero) and a forecast has been made for that period. -

to errors

if and (taa > —13 (faaa >) [make "aaaa
taaa — faal

if and (tbbh > —1) (ihbb
thhh ~ tbhb]

if and (2cc > —-1) (:iccc
iccec — :cc]

if and (idd > —-1) (sddd
iddd -~ fdd]

if and (see > -1 (:eee > ©®) [make "eeee
ieee — fee]

N
2
iy

(make "hhbhhk
@y [make "cccc

[make "dddd

S
g
'

79

if and C:ff > -1) (:fff > @) [make "ffff
SEFF — 3FF]

if and (:gg > —-1) (:ggyg
fggg — iggl]

if and (thh » —-1) (:shhh
thhh - 2hh]

if and (2jJ » —1) (23jjj > @) [make "jjijj
2idd — ®833]

b

oy [make "gggg

®) [make "hhbth

S

if and (tkk > —-1) (ikkk > ©) [make "kkkk
tkkk — 2kk]
end
Procedure ERRORS
FIGURE 4.20
Now type:
errors
display

There are your three period moving average forecasts and their associated positive or
negative errors. If you add up these errors (ignoring the signs) you will find that the total
error for the last seven periods was 191; the cumulative error for the same seven periods
using the last period sales method was 310. This technique appears to reduce forecast errors
in his particular case by over a third.

period sales f.cast ervor
1 100 4] @

2 180 @ 1]

3 15@ @ @

d 13@ 143 13
S 210 153 =57
& 169 163 3

7 150 167 17
a 240 173 -67
3 209 183 =17
19 18a 197 17

Errors
FIGURE 4.21

Now how about some visual method of representing the data? Here’s a suggestion to show
the sales figures for successive periods. Notice that it’s based on the procedure outlined in
Chapter 2 which drew a histogram.

80

to plot

cs pu setpos [—-8B0 —-80] pd

fd 109 bk 100 rt 90 fd 150 bk 150 1t 90
fd 2aa rt 90 fd 15 1t 99 bk faa
fd shh rt 99 fd 15 1t 9@ bk ibb
fd 2cc rt 20 fd 15 1t 90 bk :cc
fd sdd rt 9@ fd 15 1t 9@ bk :dd
fd see rt 90 fd 15 1t 90 bk tee
fd 2ff rt 9@ fd 15 1t 9@ bk :ff
fd sgg rt 90 fd 1S5 1t 90 bk :2gg
fd sthh rt 90 fd 15 1t 9@ bk ihh
fd 2jj rt 99 fd 15 1t 9@ bk 33
fd tkk rt 99 fd 15 1t 90 bk :kk
end

Procedure PLOT

FIGURE 4.22

Having seen that ‘PLOT’ works quite well here’s a suggestion called ‘PLOT.ERROR’
which does just that.

to plot.error
cs pu setx -20 pd
seth ® fd 10@ bk 100 rt 90 fd 150 bk 150
1t 9@ rt 290 fd 15 1t 9@
fd thbhbh rt 9@ fd 15 1t 9@ bk :bhbbb
fd fccecec vt 90 fd 15 1t 99 bk fcccc
fd :dddd rt 9@ fd 15 1t 9@ bk :dddd
fd seeee rt 99 fd 15 1t 9@ bk cteeee
fd :ffff rt 90 fd 15 1t 90 bk :ffff
fd 2gggg rt 90 fd 15 1t 2@ bk :gggyg
fd thhhh rt 99 fd 15 1t 9@ bk :thhhh
fd 2jjjji rt 90 fd 15 1t 9@ bk 2jjjj
fd tkkkk rt 90 fd 15 1t 9@ bk :skkkk
end

Procedure PLOT.ERROR

FIGURE 4.23

There, the errors from your three period moving average forecasting system have been
drawn.

Now did you notice anything about your Sales Figures? Well there appears to be a
‘SEASONAL’ fluctuation. Let’s see if this is the case — because if your magazine selling
business is subject to seasonal demand then it would make sense to ‘SEASONALLY
ADJUST’ any sales forecasts you make. Consider the following:

81

AVERAGE PERIOD SALES FOR 1983 = 100 + 180 + 150 = 143
3

AVERAGE PERIOD SALES FOR 1984 = 130 + 210 + 160 = 167
3

AVERAGE PERIOD SALES FOR 1985 = 150 + 240 + 200 = 197
3

Now let’s consider each period within each year as a percentage of the year’s average sales
per period.

Period | Year 1983 1984 1985 Average
average 143 167 197

First 70% 78% 76% 75%

Second 126% 126% 122% 125%

Third 104% 96% 101% 100%

Now what we have done is to take each period’s sales for each year as a percentage of the
year’s average sales per period. From this analysis it appears that on average the company
sells 75% of the average sales per period in the first period.

In the second period of each year sales leap to 125% of the average for the year and in the
third period sales are about average for the year at 100%.

This being the case, you as sales manager can quite rightly say “when I make a forecast for
the first period of any year, I will make the forecast and then reduce that forecast by 25%. If,
however, the forecast is for the second period in a year I will increase it by 25%. Third
period sales forecasts I will not adjust.”

All of this makes a procedure to seasonally adjust our forecasts a fairly straightforward
matter. Consider the procedure ‘ADJUST’ shown below. However, before you type in the
ADJUST procedure, try typing:

NODES (nodes)

This command tells you how much memory there is left for Logo to work
with.

82

You will see probably only a couple of hundred or so nodes left — not much.

This being the case, it is suggested that you store the ‘ADJUST’ and ‘SMOOTH’
procedures which follow on a separate disc file and call them up when you feel you need
them, having first of all made enough room in your Logo’s memory by erasing unwanted
procedures.

to adjust

make "kbbkbh vound ((:ihbh * 125 / 100) + (:
bbb * S / 10®))

make "ccc round (fccc + {(fccc ¥ S / 106)
b}

make "ddd round {({:ddd # 75 / 108) + (:d
dd * 5 / 10@0))

make "eee round {((ieee ¥ 125 / 180> + (:
eee ¥ S / 100>

make "fff round {(sfff + (sfff * S / 100)
b}

make "ggg round ((fggg * 7S / 100) + (g
gg * 5/ 106))

make "hhb round ({ihhh * 125 / 10@) + (:
hhh # 5 / 106))

make "jij round ((:jjj + (2jjij * 5 / 100
)

make "kkk round {({tkkk ® 75 / 100) + (:k
kk * S / 100))

end

Procedure ADJUST

FIGURE 4.24

Notice that as well as making the necessary adjustments in terms of seasonal variations, a
growth rate of 5% per period has been included in adjusted figure. Remember also that this
procedure can only be run once for each set of data unless some conditions are placed on the
adjustments being made. If you want to put in a sales figure, followed by an adjusted
forecast, a version of adjust that will only make an adjusted forecast after a period sales
figure has been put in by the user is required (remember you can change ADJUST in the
LOGO EDITOR screen by typing ‘ED “ADJUST”):

to adjust

if twhich = 1 [make "bbb round ({:hhh *
125 /7 100) + (sbhbh # 5 / 100))]

if swhich = 2 [make "ccc round (fccc + (
tcce ¥ S5 / 100))]

if swhich = 3 [make "ddd round ({iddd #*
75 /7 100> + (:iddd *# 5 / 100))]

83

if 2which = 4 [make "eee round ({(ieee #*
125 /7 100) + (seee ¥ 5 / 16G))]

if twhich = 5 [make "fff round (:fff + (
ifffF # S / 1090))]

if fwhich = & [make "ggg round {({fggg *
75 / 100) + (:iggg ¥ 5 / 190))]

if swhich = 7 [make "hhh round ({shhh *
125 /7 109) + (shhh # S / 100))]

if fwhich = 8 [make "jjj round ({:jjj +
(2jjj *# 5 7 106))>]

if swhich = 92 [(make "kkk round ({(:kkk *
75 / 100y + (:kkk ¥ 5 / 160a))]

erid

Procedure ADJUST Adjusted

FIGURE 4.25

You will see that ‘ADJUST’ will now only alter the forecast for period 3 if the current value
of the variable : WHICH is 2. i.e. if the user has just put in the latest sales figure and wants
an adjusted forecast for the next period.

If you now run through the routine of calling ‘MARKET" to reset all the variables to zero
and then entering the periods and associated sales figures, then asking for forecasts and
then adjusted forecasts you can begin to see how a quite sophisticated package might be
designed to carry out sales forecasts in a variety of ways and display results visually. Shown
below in Figure 4.26 is the result of ADJUSTed moving average forecasts; you can see that
the errors are now quite small.

period sales f.cast error
1 106 @ @

Z 18@ 7] @

S 159 @ 7]

4 130 114 =1&
S 210 193 —11
& 160 171 11
7 15@ 134 =16
g 240 225 =15
I 200 152 -8
i@ 129 158 -22

Seasonally Adjusted Moving Average Forecasts

FIGURE 4.26

84

The choice of packaging these various forecasting methods will be up to you as sales
manager. You may wish to have separate super—procedures for different methods, or go in
for more sophisticated file handling methods, or you may even come to use a forecasting
method that does not rely on input data. The only information the current system needs is:

1) the last sales figures;
2) the forecast for that period.

The only other element needed is what known as a ‘smoothing constant’. This constant
falls between 0 and 1 and in a lot of cases has a value of about 0.2.

The technique is called ‘exponential smoothing’ and involves the following method:

New forecast for next = Forecast for the last period + K XLast sales figure minus
period T forecast

The smoothing constant

Here’s a suggestion using a factor of 0.4, although the choice is yours.

to smooth

make "ccc vound (ihhh + (@.4 * (:hh — 1b
kR)

make "ddd round {(:iccc + (@.d #* (scc — :c
cCcod

make "eee round (iddd + (@.d ¥ (:dd - =:d
dd) 3D

make "fff round (ieee + (D.d ¥ (iee — :e
eel))

make "ggg round {(:fff + (0O.d #* (3ff — =g
ggd 2

make "hhh round (:ggy + (@.d * (igg — g
o9y

make "jij round (ihhh + (®.4 # (shh — :h
hh)>d>D

make "kkk rournd (3jjj + (O0.d * (2jj — =)
R D)

end

Procedure SMOOTH

FIGURE 4.27

When you run this procedure and plot the errors however, you will see that the predictions
are actually made worse, as shown below in Figure 4.28.

85

periogd sales f-cast Eryor
1 10a D]

2 129 7 @

3 150 2 -78
o 1Ze 103 =27
S 21@ 114 -6
& 160 152 g
7 159 155 5

g 2d0 153 -&87
= 200 138 ~1.2
ia 186 193 13

Exponentially Smoothed Errors

FIGURE 4.28

Clearly, the value chosen for the fiddle-factor — sorry, ‘smoothing constant’ — must be
made carefully!

86

Chapter 5

Investment Analysis

Ever had trouble deciding where and how to invest the large sums of money that you have
as liquid assets in your bank account? Do you have problems in choosing between
investment opportunities on offer to you? Well, if this is the case here are a couple of
suggested methods for assessing how best to invest the odd few thousand pounds or so.

Imagine the scene, you with anything up to £50,000 to invest and three opportunities
confronting you.

What should you do?
Well, there are a lot of very clever people whose job it is to assess investment on your behalf
using some very sophisticated methods and models. On the other hand you might, as a first

step, like to use one of the methods outlined in this chapter.

The three investment proposals are shown below.

Year A B C
0 (25000) (50000) (15000)
1 8000 5000 10000
2 8000 15000 20000
3 8000 32000 20000
4 8000 30000 0
3 8000 20000 0
6 8000 3000 0
7 8000 2000 0
8 8000 0 0
9 8000 0 0
10 8000 0 0

All figures are in pounds and the figures in brackets represent the initial investment, i.e.
money to be invested in year 0. The other figures represent cash flow returns as a result of
the investment at the end of each year indicated. Note that the projects have different
lifespans and that zero is entered if there is no cash inflow that year.

87

As a first step in computing the information you will need to develop a procedure to gather
the information about the alternative investments, which you can call A, B and C. Take a
look at these suggestions:

88

to ask

pr [HELLO,I WANT SOME INFORMATION']

pr []1 pr [FIRST OF ALL,TYPE IN (A first,

B second,C third)]

pr [THE INVESTMENT RETURN DURATIONS]

pr []1 pr [WITH A SPACE BETWEEN EACH]

pr []1 pr [THEN PRESS RETURN]

make "input rl

make "zz item 1 input make "zzz item 2
tinput make "zzzz item 3 finput pr []

pr [NOW THE PROJECT COSTS IN THE SAME WA

Y3

make "input rl make "h @

make "bb item 1 finput make "bhh item Z
finput make "bbbb item 3 finput

pr [NOW THE INVESTMENT RETURNS]

repeat 3 [pr [1]

pr [FIRST YEAR 1] make "input rl1 make "c
1

make "cc item 1 finput make "ccc item
tinput make "cccc item 3 finput

X

ct pr [YEAR 2] make "input rl make "d 2
make "dd item 1 2input make "ddd item 2
tinput make "dddd item 3 finput

ct pr [YEAR 3] make "input rl make "e 3
make "ee item 1 2input make "eee item 2
tinput make "eeee item 3 finput

ct pr [YEAR 4] make "input rl make "f d
make "ff item 1 2input make "fff item 2
tinput make "ffff item 3 finput

ct pr [YEAR 5] make "input rl make "g S
make "gg item 1 finput make "ggg item 2

tinput make "gggg item 3 finput

ct pr {YEAR 6] make "input rl make "h &
ask2

end

Procedure ASK

FIGURE 5.1a

to ask2

make "hh item 1 :input make "hhh item
tinput make "hhhh item 3 finput

ct pr [YEAR 7] make "input rl make "j
make "jj item 1 :input make "jjj item
ftinput make "jjjj item 3 finput

ct pr []

ct pr [YEAR 8] make "input rl1 make "k

make "kk item 1 finput make "kkk item
tinput make "kkkk item 3 finput

ct pr [YEAR 9] make "input rl make "l

make "11 item 1 finput make "111 item
finput make "1111 item 3 :finput

ct pr [NOW THE LAST YEAR] make "input
make "m 10

make "mm item 1 finput make "mmm item
tinput make "mmmm item 3 finput
erasefile "data save '"data

end
Procedure ASK2

FIGURE 5.1b

The second line of procedure ‘ASK’ requires the input:

10 7 3 <RETURN>

Next the various items of this input are set to variables, thus in the fifth line of the

procedure, ZZ is set to 10, ZZZ to 7 and ZZZ to 3.

The initial investment and the various cash flows are then input by the user remembering
to input a zero if there isn’t any cash flow in that year from a particular project. The
procedure has been split into two, ASK and ASK2 because of the limits to procedure length

in Logo.
Now for a procedure to display the information.

to display

.p r (: s e n n " " " " n n n " = z z n n [1]
[1] n H ZZZ n n 1] 1] n 1] " n " " " H zzzz)
pr_ (Se IIYEAR " n n " n IIA [1] [1] n n n 11}
L1 IIB n n " n " [1] n n n " n IlC)
pr.. (se " n : b n " L1 " L1} 1 1] = bb " an n [1]
bb 1] " " n " " n = bbbb >
p r (Se [1] 11 = c " n n L1} n n H cc n n n n
= c c c " n n n n " n n : c c c c)
p r (se " " H n " " n n n H dd n n n n
= ddd n n " " [1] n n = dddd)

89

(se

n

Py
ieee
pr (se
5 25 i
pr (se
fggg "
pr (se
shhh "
pr (se
CIN IR I B
pr (se
tkkk M
pr (se
#1111 *®
pr (se
fmmm
end

thhhh)

" immmm)

" n n " :ee
teeee)
e -
tffff)
et igy
fggygy)
A 1 11

S F
2333

L
thkkkk)

W o 217
t1111)

TR S——

Procedure DISPLAY

FIGURE 5.2

Now RUN ‘ASK’ making the appropriate responses.

Having done that call ‘DISPLAY’ and your screen should look similar to the one shown
below in Figure 5.3. If you are unhunhappy with the display then edit ‘DISPLAY".

YEAR

R =S

— 0N

S

Now save the ‘DISPLAY’ procedure under the filename ‘dis1’ and the ‘ASK’ and ‘ASK2’

[N -
b

25009
2QHG
DO
110}
D@

¥

0
S

(OO R
=S

w
>
=

S SE S
i)

S

!

W

S S S
=

[

oo

Nm =~

'

SHDO@
5000

15000
2000
JIODG0

000
intole)
@
(%)
@

DISPLAY’s Display

FIGURE 5.3

procedures under the filename ‘askl’.

90

DO I

0 L

1S@ag:
1 H@OH5
20000
ZOOEHEG
@
@
0]
@

Now the first of the analytical tools involves asking the question:
‘How Long will it be before the investment has paid for itself?’

In order to calculate the answer to that question, consider the procedure ‘PAYBACKA’
shown below in Figure 5.4:

to payhacka
pr [FOR PROJECT Al make "x @ make "g @
make "x fcc notea pr (se ic "years "+ Ig

y if 1w > thh [stopl

make "x fx + 1dd notea pr (se :d "years
"+ gy if ix » fhh [stopl

make "»x Ix + iee notea pr (se e "years
"+ gy 1f ix ¥ thh [stop]

make "x ix + :ff notea pr (se :f "years
"+ gy 1if x> thh [stop]

make "% fx + !gg notea pr (se iIg "years
"+ 2g) 1if fx » thh [stopl

make "x Ix + thh notea pr (se Ih "years
"+ gy if ix ¥ ihb (stop]

make "x Ix + :jj notea pr (se :ij "years
"+ o2g)y if fx > ihh [stopl

make " Ix + ikk notea pr (se k "years
"osgy if Iw thkh [stopl

make "x Ix + 111 notea pr (se 11 "years
"+ gy if fx ¥ thh [stop]

make "x Ix + Imm notea pr {(se Im "years
"+ oagy 1f x> kb [stopl

vepeat 3 [pr [1]
ernd
Procedure PAYBACKA
FIGURE 5.4

The first line of ‘PAYBACKA’ sets the variables X and Q to zero.

‘X’ is the cumulative cash flow for the investment and Q is the amount of money left over at
the end of a given year after the investment has paid for itself.

The second line makes X equal to CC (8000) then moves to the procedure ‘NOTEA’.

to notea
pr (se "total "vreturn "to "date ix)
if tx * thbh [make "q tx — bk pr (se "pa
id "back "within)]
end
Procedure NOTEA
FIGURE 5.5

91

This procedure shows the cash flow to date and looks to see if this total (X) is larger than the
original investment (BB) (£25000). If it is, Q is calculated and the message

PAID BACK WITHIN

is printed. Now back to line 2 of ' PAYBACKA’ where the number of years plus the surplus
is printed and the procedure is stopped.

Type:
paybacka

and you will be told that the investment pays for itself within 4 years plus a bonus of £7000
at the end of that year. (The variables saved in e.g. ‘dis]1’ will have to be present.)

You can now edit this procedure to enable the payback period on proposals B and C. I’ve
called them ‘PAYBACKB’, ‘PAYBACKC’, ‘NOTEB’ and ‘NOTEC’ and here they are:

to paybackb

pr [FOR PRQJECT B] make "x @ make "q ©

make "x fccc noteh pr (se ic "years "+

g) if fx > thbhh [stopl

make "x fx + iddd noteb pr (se :d "years
"+ i1q) if fx » fhhh [stop]

make "x x + ieee noteb pr (se i1e "vyears
"+ 1q) if ix » ithbh [stop]

make "x tx + Ifff noteh pr (se :f "years
"+ gy if ix » ihhh [stopl

make "»x Ix + fggyg noteh pr (se ig "years
"+ gy if x> thhh [stop]

make "x ix + fhhh noteb pr (se th "yeais
"+ tqg) if fx » tbhh [stop]

make "x Ix + 1jjJ notebh pr (se :j "years
"+ 2q) if fx > thhh [stop]

make "x Ix + kkk noteb pr (se ik "years
"+ 2q) if x * thhh [stopl]

make " ix + 111 noteh pr (se 1 "years
"+ fq) if ix > shbhh [stop]

make " Ix + Immm noteb pr (se Im "years
"+ fqg) if fx > thhh [stop]

repeat 3 [pr [1]

end

to noteb

pr (se "total "return "to "date :x)
if x » thhh [make "g Ix — ihbhh pr (se "
paid "back "within)]
end
Procedures PAYBACKB and NOTEB

FIGURE 5.6a

92

to paybackc
pr [FOR PROJECT C] make "% ©® make "q O
make "x fcccc notec pr (se :c "years "+
ig) if fx » :thbhh [stop]
make "x Ix + idddd notec pr (se d "year
s "+ 1g) if ix » thhbhb [stop]
make "x Ix + ieeee notec pr (se fe "year
s "+ 1g) if tx » thhbhh [stop]
make "x Ix + 1ffff notec pr (se :f "year
s "+ 1g) if x > fhbbh [stop]
make "x Ix + Igggg notec pr (se g "year
s "+ fqg) if fx > fhhbh [stopl
make "x ix + fhhhh notec pr (se :*h "year
s "+ 1g) if ix > ihhbhbh [stop]
make "x Ix + 1jjjj notec pr (se :j "year
s "+ iqg) if ix » ibhbbh [stop]
make "x Ix + kkkk notec pr (se tk "year
s "+ i1g) if ix » fhbhbh [stopl
make "x fx + 1111 notec pr (se :1 "year
s "+ tqg) if fx > fbhhb [stopl]
make "x Ix + Immmm notec pr (se Im "year
s "+ 1q) if ix > thbhb ([stop]
repeat 3 [pr [1]
end
to notec
pr (se "total "return "to "date :x)

if :x > ithbhh [make "gq :x — fhbhh pr (se

"paid "back "within)]
end

Procedures PAYBACKC and NOTEC

FIGURE 5.6b

How having RUN PAYBACKA, B and C you might be able to make a decision as to the
best investment. However, the payback method of analysis does not consider TOTAL
revenue earned. It might be useful therefore to know

1) The total revenue generated by each proposal;

2) The average annual revenue generated over the life of the proposal;

3) The nett total (allowing for 100% depreciation of the original
investment during its life);

4) The nett average income (assuming straight line 100% depreciation
over the life of the project).

Before you go on to do this however, your Logo working space will be a little full, so save the
procedures thus far defined in this chapter under the file heading

chSam (chapter 5 amstrad)

93

Now type:

erall
and re-load ‘chSam’.

Now we need some of this information to enable the next set of calculations to be made, so
type:

er "ask
er "ask2
er "paybacka
er "paybackb
er "paybackc

er "notea
er "noteb
er "notec

and this should leave you with the ‘DISPLAY’ procedure in your computer’s memory.

Now let’s consider some other procedures to evaluate the information contained within the
‘DISPLAY’ procedure.

Take a look at the proposed procedures to do just this for investment proposal A.

to totala
if 2cc > @ [make "x :fcc make "xux x]
if :dd > ©® [make "x 2y + :dd make "x»x x

/2]

if fee > @ [make "x x + fee make "xx 3
£ 37

if sff > ® [make "x iy + 1ff make "ux ix
/ 4]

if :gg » © [make "x ix + fgg make "xx I
/ T)

if *hh > @ [make "x ix + thh make "xx :x
/ &)

if :jj *» @ [make "x tx + 1jJ make "xx I
S 7]

if tkk > © [make "x x + fkk make "xux 1x
/ 8]

if 2111 > @ [make "x ix + 211 make "ux ix
/)

if tmm > @ [make "X fx + imm make "xx :x
/ 1@]

94

repeat 2 [pr [J] pr [(for A] pr (se "TOTA
L "GROSES "RETUEN :x) pr []
pr (se "AV. "ANNUAL "INCOME :xx) pr []
make "z Ix — kb make "qgg (ixx — (ibh /
$zz)) pr (se "TOTAL "NETT "RETURN :2:z)
pr [J pr (se "AV. "NETT "ANNUAL "INCOME
tqg) repeat I (pr [13]
end

Procedure TOTALA

FIGURE 5.7

This procedure during the first ten lines does two things. First of all, it keeps track of the
cumulative earnings of the project, using the variable X. It also keeps track of the average
annual income XX.

Then in line eleven it prints the gross cash income (X) and the average annual income (XX).
It then, in line thirteen, sets a variable Z to X minus BB (cost of project) which will give the
NETT (after depreciation) cash income earned. It also calculates QQ which is the average
annual income minus the average rate of depreciation (BB/ZZ).

Thus, if you RUN ‘TOTALA’ you should receive this message:

FOR PROJECT A
TOTAL GROSS RETURNW 88888

AVERAGE AWNUAL IMCOME 8880
TOTAL WETT RETURN 55808
AVERAGE NETT ANNUAL INCOME 5588

1

Income From Project A

FIGURE 5.8

Now here are the procedures for the same calculations with B and C.

95

96

to totalb

if 2ccc > © [make "x fccc make "xx ix]
if tddd > @ [make "x ix + :ddd make "xx
ix / 2]

if zeee > @ [make "x Ix + feee make "xx
ix / 3]

if sfff > @ [make "x tx + :fff make '"xx
tx / 4]

if :ggg > @ [make "x Ix + iggg make "xx
ix / 3]

if shhh > @ [make "x tx + thhh make "xx
ix / 6]

if 2jjj > © [make "x fx + :jjj make "xx
ix / 7]

if fkkk > @ [make "x :x + ifkkk make "xx
tx / 8]

if 2111 > © [make "x x + 2111 make "xx
tx / 9]

if tmmm > @ [make "x ix + :mmm make "xx
ix / 10]

repeat 3 [pr [1] pr [for Bl pr (se "TOTA
L "GROSS "RETURN :x) pr []

pr (se "AV. "ANNUAL "INCOME :xx) pr []
make "z :x — ihbb make '"qq (ixx — (:bhbhb
/ tzzz)) pr (se "TOTAL "NETT "RETURN :z
)

pr [] pr (se "AV. "NETT "ANNUAL "INCOME
tqq) repeat 3 [pr []1]

end

Procedure TOTALB

FIGURE 5.9a

to totalc
if fcccec > @ [make "x fcccc make "xx ix]

if tdddd > @ [make "x :x + :dddd make "X
X ix / 2]
if teeee > © [make "x ix + ieeee make "x
% ix / 3]
if :ffff > © [make "x ix + :ffff make "x
X ix / 4]
if Igggg > @ [make "x ix + fgggg make "x
X ix / 3]
if thhhh > © [make "x ix + fhhhh make "x
X ix / 6]

if 2jjji > @ [make "x tx + 213j33ij] make "

X sx / 7)

if tkkkk » ® [make "x x + fkkkk make "

w ix / 2]

if 21111 > © [make "x tx + 21111 make "x
tx /9]

if tmmmm > ® [make "% ix + Immmm make

#» o ix / 10]

repeat 3 [pr (] pr [for C] pr (se "TOTA

L "GROSS "RETURN x> pr []

pr (se "AV. "ANNUAL "INCOME fxx) pr [3]

make "z fx — thhhh make "qq (ixx — (:hbh

h /7 tzzzz)) pr (se "TOTAL "NETT "RETUREN
g

pr [J pr (se "AV. "NETT "ANNUAL "INCOME
tqgq)y repeat 3 [pr [J]

end

Fe

Procedure TOTALC

FIGURE 5.9b

Having defined TOTALA, TOTALB, TOTALC and with ‘DISPLAY” still in memory,
create a disc file called:

chSbam

and having made that file, get rid of TOTALA, TOTALB and TOTALC leaving
DISPLAY to be a procedure in the last disc file called:

chScam

Thus far the TIMING of future cash flows has not been taken into account when
considering a given investment. In ‘A’ for example, where £25000 is to be invested at the
start of the project, the £8000 income at the end of year 10 will be worth less than the £8000
at the end of year 1. What has to be considered of course is the “TIME VALUE OF
MONEY’. The notion of cumulative or compound interest will be useful here. Let’s
imagine that you invested £100 at 10% interest (paid at the end of each year) per annum.
You will expect to see your investment grow in the following way:

Year
0 (100)
1 110
2 121
3 133.1
4 146.41

etc.

97

From this you can see that, if you require a certain rate of return on money invested any
future sums must be discounted so that a ‘PRESENT VALUE’ of a future cash inflow can
be considered. Thus £8000 in ten years time will only be “‘WORTH’ just over £3000 in
present day value terms if we require a return of 10% on an investment — i.e. if we invest
£3084 now, we will get £8000 in ten year’s time with a 10% compound interest rate.

The formula used to calculate the compound interest on a sum of money is

The future sum = X * (1+interest rate)N

The amount to be invested r The number of years over
which the investment will
Say 10% (0.1) run

Let’s see what £100 will be worth in FOUR year’s time using this formula.

Future sum 100 X (1 + 0.1)*

= 100 X 1.4641
= £146.41

To work out instead the present value X given the future sum, you simply divide the future
sum by the part in brackets to the appropriate power:

Pres. value X = Future sum_
(140.1N

In order to calculate this present value, consider the procedure ‘DEPA’ shown below.
to work

make “ww 1 + (ipp / 1007
make "t ww

repeat fw - 1 [(make "ww fww ¥ I1t]
e

to Jdepa

WOk

make "x 3 /o tww

make "w Iw + 1

pro iy make "gqogq Sqqgqg + EX

end
Procedures WORK and DEPA

FIGURE 5.10

98

The work procedure does the job of:

(1 + INTEREST RATE)Y

t

:pp will be given This will be :w
by the user when
the DISCOUNT

procedure is called.

you can see that the procedure to ‘raise to the power of has been used.

X is the amount of income in a given year and W is the year for which the calculation is to be
made. Each time the procedure is run, W is incremented by adding 1 to its previous value.
The variable QQQQ is used to keep track of the cumulative discounted totals.

Now consider the procedure “TOTALADEP’ which, for project A, looks at the future cash
flow in the first year, sets that figure to X and carries out ‘DEPA’. It then, of course, does the
same for each of the other future cash flows. The total PRESENT VALUE’ of the future
cash flows will be displayed: also the NETT given above the required rate.

to totaladep
make "x icc depa

make ":x 1dd depa
make " fee depa
make "w ff depa
make "« fgg depa
make "w Ihh depa
make "w 2133) depa
make " rkk depa
make "x 11 depa
make "x imm depa
make "wwx (Pyggogg - fhobo

repeat 3 [pr {31 pr [FOR PROJECT A]
ey (se "TOTAL “GROSS "CASH "INFLOW 2 gogag
Y opr (3
pir (se "USING ipp "EATE "OF "RETURN
pr (se "METT "GAIN "ABIVE "FEQIIRLD “"R&T
E axunx)
end
Procedure TOTALADEP

FIGURE 5.11

After putting in TOTALADERP type:

make "pp 10
make "w 1
make "qqqq @

99

Now type:

totaladep

And the present values of future cash flows will be displayed for you. You will see that the
inflow above the required rate is considerable for investment ‘A’. Here are the procedures
for ‘Discounted Cash Flow’ (DCF) analysis for projects B and C:

to totalbdep

make "x fccc depa

make "x iddd depa

make "x ieee depa

make "x 1fff depa

make "% ifggg depa

make "x fhhh depa

make "x :jjj depa

make "x fkkk depa

make "»x 2111 depa

make "x Immm depa

make "Mxxx (fqggqg — fhhh)

repeat I [pr [J] pr [FOR PROJECT R]

pr (se "TOTAL "GROSS "CASH "INFLOW :gqqgq
> pr (1

pr (se "USING :ipp "RATE "OF "RETURN)

pr (se "NETT "GAIN "ABOVE "REQUIRED "RAT
E suxwx)

end

Procedure TOTALBDEP

FIGURE 5.12a

to totalcdeyp

make "x fcccc depa

make "3 :1dddd depa

make "x teeee depa

make "x iffff depa

make "x igggg depa

make "x :fhhhh depa

make "% $jjjJ depa

make "x fkkkk depa

make "x 1111 depa

make "x :mmmm depa

make "xuyxxux (fgqqgqqg — Shbhh)

repeat 3 [pr []] pr [FOR PROJECT C]
pr (se "TOTAL "GROSS "CASH "INFLOW :qqgggq
y pr (]

100

pr (se "USING :pp "RATE "OF "RETUEN)

pr (se "NETT "GAIN "ABOVE "REQUIIRED "RAT
E fxxxx)

end

Procedure TOTALCDEP

FIGURE 5.12b

Now for a procedure called ‘DISCOUNT’ which will carry out DCF analysis automatically if
required.

to discount
pr [WHAT RATE OF RETURN > 7]
make "pp item 1 rl
make "w 1
make "gggqy @
totaladep
make "w 1
make "gqggqg @
totalbdeyp
make "w 1
make "gqqgg @
totalcdep
end
Procedure DISCOUNT

FIGURE 5.13

In the first line, the required rate of return is put in by the user (say 25%) and after that the
calculation and display is automatic. All that is needed is a procedure to control everything,
but first save the procedures currently in memory (DISPLAY, TOTALADEP, TOTAL-
BDEP, TOTALCDEP, WORK, DEPA & DISCOUNT) under the filename ‘chScam’.

Now while you have been using various techniques during this chapter, your disc files will
contain some unwanted and sometimes burdensome information; for example if you type:

erall
load "chb5am
poall

this will display
the whole contents of
Logo memory.

you will see, as expected, the various procedures saved under that filename and also all the
variable values. Now when you load in that file, those variables are set as well. So, if you are
to make use the various procedures, here’s one called START which will clean up the

variable values by setting them to zero.

101

to start
make "z ® make "x ©® make "zz 9 make "q @
make "xx ® make "zzz ® make "in @ make

Hl (B

make "k @ make "j ® make "zzzz © make "h
® make "g ® make "f ©® make "e ® make "
d @

make "c ® make "h @ make "gg @ make "mm

@ make "11 @ make "kk © make "jj ©® make
"hh @

make "gg @ make "ff @ make "ee @ make "d

d @ make "mmm @ make "cc @ make "hh ©® m

ake "111 @

make "kkk © make "3jiJg ® make "hhh ® make
"ggg @ make "mmmm @ make "fff @ make "
imput @ make "1111 @ make "eee O make "

ddd @

make "ddd ® make "kkkk ©® make "ccc ® mak

e "jjiy ® make "hbhb ® make "hhhh ® make
"gygy @

make "ffff ® make "eeee ® make "dddd @ m

ake "cccc @ make "khbh @

ernd

Procedure START

FIGURE 5.14

Another useful procedure will be one called DATA.

to data

start display

g "start er "display recycle

load "askl ask

ev "ask er "askZ erasefile "data save "d
ata

et

Procedure DATA

FIGURE 5.15

Now define DATA and save the procedures START, DISPLAY ad DATA under the
filename ‘DATAL’.

Now create a filename called DATA just by saying:
save "data

102

If you now erase everything from the computer’s memory by typing:

erall

and then you

load datal

and then call

data

1) all variables will be set to zero;

2) the investment matrix will be displayed,;

3) the START and DISPLAY procedures are then erased;

4) the ASKI1 file is loaded and the necessary infromation collected from
the user;

5) ASK and ASK2 are erased and the variable values saved under a

filename ‘DATA’.

If you now say:

erall
load "data
poall

You will see the values you’ve just put in come up on the screen. (You will have to press

RETURN a few times).

Now you can say:

erall
load "ch5am
load "data

paybacka paybackb paybackc

and your latest data will be analysed.

Now say:
erall
load "chb5bam
load "data

totala totalb totalc

103

and of course you finish off with:

erall
load "chb5cam
load "data

discount totaladep totalbdep totalcdep

Now you can build a super procedure to carry out interactive investment analysis.

104

Chapter 6

Production Scheduling

In Chapter 2, you learned how
1tem
worked. For example if you say:

item 3 "logo

the G, i.e. the third item, will be the resultant output.

You could also ask for:
item 6 [a b c de f]
and ‘F’ will result

You can also say:

make "gg [a b c d e f]
followed by:

pr item 3 :gg
with ‘C’ resulting.
Now try saying:

make "qq [logo works]

followed by:

pr :gg
pr :qq

105

Now try saying:

make "qq :gg
pr "aq

and you will see that the contents of the variable ‘GG’ are now the contents of the variable
3 bl
QQ.

Now this facility might act as the basis for a data handling system and will prove very useful
during this section of the book which introduces you to the art of PRODUCTION

SCHEDULING.

Now imagine the scene. You, as production manager, are faced with the problem of having
to decide the order in which a number of different jobs of different sizes are to be listed so
that they can be worked on by two production areas in the shortest possible time. The other
major constraint is that all the jobs must go through area A first, followed by B. The times
required for each job in each area are shown below.

A ‘B
JOBI1 9 7
JOB2 8 11
JOB3 2 9
JOB4 3 1
JOBS5 5 7
JOB6 2 11

Now you can see from the above list that ‘JOB1’ requires 9 days in production area A and 7
days in production area B and indeed that all of the jobs require time in each of the areas.

Suppose for a moment that the jobs are to be done in exactly the order in which they are
listed above. What would be the total elapsed time through A and B for all the jobs,
remembering that each of them must go through A first, then B? Well, here’s the solution
for the first job on the list.

A B
in out in out
JOB1 0 9 9 16
The first job will enter A at time zero and will emerge after 9 days, so it will emerge from B
after a total of 16 days.

ie:

16

ime for the first job in B

0+9=9 9 +7

= Val "

Time for the first job in A

106

Now to continue with the second job:

A B
in out in out
JOBI1 0 9 9 16
JOB2 9 17 17 28

You can see that the second job can’t start in A until the first job is finished and that it can
then go straight into B because the first job is by then finished in B. In fact the B facility will

not be working for a day. Now for the rest of the jobs:

A B

in out in out
JOB1 0 9 9 16
JOB2 9 17 17 28
JOB3 17 19 28 37
JOB4 19 22 37 38
JOBS 22 27 38 45
JOB6 27 29 45 56

It looks as though using this order for the jobs, the total throughput time is 56 days and that

most jobs will have to wait between A and B.

Let’s try a different order to try and reduce the time:

A B

in out in out
JOB4 0 3 3 4
JOB6 3 5 5 16
JOB1 5] 14 16 23
JOB2 14 22 23 34
JOB3 22 24 34 43
JOBS 24 29 43 50

Now, using the order 4 6 1 2 3 5, the time has been cut to 50 days. There are 720 different
combinations for these six jobs and it would take all day to work through all the options to
find the shortest time. There is however an ALGORITHM (method of calculation) that
guarantees to schedule any number of jobs through two centres (in the order A B) in the

shortest possible time! Here’s how it works:

1) Take the shortest time in the lists of times. (If there is duplication it does not

matter which one you choose.)

2) If that time is for the second operation, schedule that job last. If it is for the

first operation, schedule that job first instead.
3) Having scheduled that job, take it from the list.

4) Repeat operations 1) to 3), scheduling the jobs as close to first or last as

possible.

107

Here’s our example:

A B
JOBI1 9 i
JOB2 8 11
JOB3 2 9
JOB4 3 1
JOBS 5 7
JOB6 2 11

Now JOB4 contains the shortest time, and it’s in the second operation, so JOB4 will be
scheduled last.

JOB4
t }
First last

From the reduced list either JOB3 or JOB6 can be scheduled first. I've chosen JOB6.

JOB6 JOB4

This means that JOB3 will be scheduled as near to ‘first’ as possible, which will be in the
second position.

JOB6 | JOB3 JOB4

If you carry on along these lines your schedule will look like this:—

108

Let’s see what the total elapsed time is:

A B

in out in out
JOB6 0 2 ¢) 13
JOB3 2 4 13 22
JOBS 4 9 22 28
JOB2 9 17 29 40
JOBI1 17 26 40 47
JOB4 26 29 47 48

Well it looks as though the minimum time is 48 days.

How about a LOGO procedure to carry out this particular algorithm?

Let’s start off with a procedure that will ‘SET’ the times for the various jobs.

to set

make "jl1 [1 9 7 ©]
make "j2 [2 & 11 @]
make "j3 [3 2 9 @]
make "jd [d 3 1 @]
make "jS [5 7 @]
make "j& [& 2 11 @]

ernd

Procedure SET

FIGURE 6.1
As you can see, the jobs J1 to J6 inclusive have been set to four items.
The first item is simply the job number.
The last item is zero and will be used as a ‘FLAG’ or INDICATOR’ when a particular job
has been scheduled.
The second and third items represent the times for each job in production centres A and B.
Now in order to be able to find the smallest times in each of the A and B columns, a method
sometimes called a ‘bubble sort’ will be used. In our case, the bubble sort will make the

smallest figures rise to the top of the column.

Consider the first two jobs:

Job A B flag
No.
JOB1 n= 1 9 7 0]
JOB2 2= [2 8 11 0]

109

Now the logic for finding the smallest value for A will be:

If‘A’ (9) for JOB1 is larger than ‘A’ for JOB2, swap the contents of] 1 for the contents of] 2.

Thus
1 9 7 0]
2 [2 8 11 0]
BB 2 0]
4[4 3 1 0]
5[5 5 7 0]
J6 [6 2 1 0]

Will become:
o [2 g 11 0] .
J2 1 9 7 0] } Notice the change here
BB 2 9 0]
J4 4 3001 0]
55 5 7 0]
J6 [6 2 1 0]

Now we can repeat the logic by saying:

)

“If item 2 of]2 is larger than item 2 of J3 then swap them over”.

This will result (in our example) in:

J. [2 8 11 0]
2 3 2 9 0] .

AERE b 9 7 0] } (Again the change)
J4 4 3 1 0]

AL 5 7 0]

J6 [6 2 U 0]

Continuing the logic, the ‘9’ as the largest ITEM 2’ will ‘SINK’ to the bottom of the list.

o2 8 11 0]
2 3 2 9 0]
B[4 301 0]
J4 5 5 7 0]
J5 [6 2 11 0]
J6 [9 7 0]

Now type:

set

110

Followed by:

=71

132
and the values will be displayed. Now type:

if item 2 :j1 > item 2 :j2 [make "j2 :jl]
Now type:

2
You will see that values have been swapped. OR HAVE THEY?
Type:

|
You will see that you have lost the original contents of]2.

It’s fairly obvious what has happened; consider this example:

il =%
=Y

If we say “MAKE]J1 = Contents of J2, J1 will become Y and X will have been lost.

In order to overcome this, a dummy variable can be used by saying:

Nn=X
2=Y¥

Make ‘C’ the contents of J1 then make J1 the contents of J2 and]2 the contents of C. Then
you will end up with:

=Y

J12=X

Using this technique, the first part of the first line of a procedure ‘SORT.A’ could read:

if and (item 4 :j1 = 0) (item 2 :j1 > item 2 :j2)
— —, T e, —
The last item of J1 is zero and The second item of] 1 is greater than
therefore able to be considered the second item of J2.
(this ‘flag’ tells us whether we
have already checked :J1. In this
case we haven't).

111

The last part of this line will read:

[make "c1 :jl make "jl :j2 make "j2 :cl]
This will swap the contents of the two variables by making use of the dummy variable C1.

The other lines in this procedure will continue the logic.

to sort.a

if and (item 4 2j1 = ®) {(item 2 :j1 > it
em & 13Z) [make "cl :j1 make "j1 :32 ma
ke "Jg2 fcl]

if and (item d j2 = @) (item 2 :3:j2 > it
em £ 233> [make "cl 232 make "jZ :1j3 ma
ke "Jj3 =2cl]

if and (item 4 :j3 = @) (item 2 13 » it
em = :3d4) {make "cl)3 make 33 234 ma
ke "jd ::cl]

if and (item d4 1jd = @) (item 22 1jd > it
em = $3iS) [make "cl1 2jd make "jd :j5 ma
ke "3jS 1ci]

if and (item 4 15 = @) {(item 2
em < 13&A) [make "cl)5S make "J5
ke "j& 2cl])

evid

Procedure SORT.A

FIGURE 6.2

Let’s now define an illustrative procedure to show that ‘SORT.A’ is working properly.

to =z

protjl
el Gl T, B
pr 33
py- Fgd
P 135
(R N -
end

A Procedure Z To Test SORT.A

FIGURE 6.3

This of course will print out the contents of the variables.

112

Try calling:

‘set

Tsortea

®

11

PO I Cx]
D T

L I G)

X I ol g [}

=
4
-
4
£

o

12 7

The Result Of Calling SORT.A

FIGURE 6.4

and you will see in Figure 6.4 that the first job has sunk to the bottom of the list.

Now try:

> S > = > [
S S S @ L) S 3 e = (S S
i el i -4 i Ll
(L e I IR I [T D Il o
SN MWDo e IS O TR v M WN O
MO i N MO INN-—-
~m
L}
d
B
=
|
wJ
a
9]
Ld
4
o
0
-
-0
> (] LoON] S o)
+ IO L) (SIS = LN @ e
] ~ vt - -
5 [T R O N Tt =N ot N -
o
W_.e O M NE o I S T Y 2 I C4FY N0
e) R D D Mot 0 0 O Ml O WD N

Bubble Sort In Action

FIGURE 6.5

113

Now it’s a very simple step to edit ‘SORT.A’ to give ‘SORT.B’ as shown below.

to sovrt.-h

{1tem 4 231 = @) {(item T 231 > 1t

em T T3Ey (make "ol 11 make "j1 i3I ma

ke "32 1:c173

if and (item 4 32 = @) (item T 132 » 1t
Ty 3: [make "ol 232 make "j2 1) ma

ke "33 1cl]

if and (i1tem 4 13T = @) Jitem T3 1

em % 13id) [make "¢l 23 make "33 tid ma

ke "i3d 1ct]

1f and (item d $3a = @) {item T jd it

-

em 5 3131%0 Imake "ol 134 make "jd ;S ma
ke M35 ot

1f and (1tem 4 235 = O {item I :j5% > it
em 3 136 imake "<t 35S make "J5 1jé& ma
ke "jg& 1c1]

znd Procedure SORT.B

FIGURE 6.6

All you have to do is to change the ITEM number from 2 to 3 in each case — and don’t forget
the procedure’s name!

Now for a procedure called ‘SCHEDULE’ to complete the job.

to scheduie

vepeat & [sort.al

make "first.johk item 1 31 make "31 [@ @
1]

repeat & (sort.h]

make "last.joh 1tem 1)32 mnake

w1

repeat & [sort-aj

mare “"second.jobk 1tem 1 i3 make

Y I O

repeat & [sort.h]

makte "fifth.joh item 1 13d make "jd [& @
@ 1]

repeat & [sort.al

make “third.jok item 1)% make "JjS [@ O
1]

mate "fourth.job item 1 136&

pr (se first.joh fsecond.johb fthird.jok
sfourth-job ¢fifth.joh :last.joh?

enid Procedure SCHEDULE
FIGURE 6.7

iz [©

UJ‘:.:" [(Z)

114

The first line carries out the first bubble sort; the second line sets a variable ‘FIRST.JOB’ to
the firstitem in J 1. This of course is the job number of the first job to be scheduled. J1 is then
reset, making the last item 1 so that it won’t be considered again by the SORT procedures.

The logic continues until the jobs in the order in which they are to be scheduled are printed.
Now try typing:

set
schedule

and you will receive the list:
362154

which will give the shortest total time through A and B. Let’s try it out!

A B

in out in out
JOB3 0 2 2 11
JOB6 2 4 11 22
JOB2 4 12 22 33
JOB1 12 21 33 40
JOBS 21 26 40 47
JOB4 26 29 47 48

Now earlier on, carrying through the algorithm manually we arrived at a schedule of

635214
Which gave the same time as:
362154

In terms of total time it does not matter which schedule is used.

The more observant among you may have noticed that ‘SCHEDULE’ will not necessarily
work if the smallest times for both A and B are for the same job and if the B time is less than
the A time, because A gets checked first. You might like to investigate ways around this
problem, if you like puzzles!

Now under certain conditions, the algorithm as it stands will work for three work centres,
for example:

A B C
JOB1 27 16 13
JOB2 25 12 16
JOB3 26 13 11
JOB4 19 18 14
JOBS 34 17 15
JOB6 32 18 12

115

In order for the algorithm to work, one of the two following conditions must be true.
1) The smallest in A must be as large or larger than the largest in B; i.e.
AMIN > BMAX
2) The smallest in C is as large or larger than the largest in B; i.e.
CMIN > BMAX
Now you can see that the first condition is true, allowing the algorithm to apply.
The method is to add the ‘A’ times to the ‘B’ times and create a fictitious centre X.

Then add the ‘C’ times to the ‘B’ times and create another fictitious centre Z. Thus the
scheduling problem looks like this:

X z
JOB1 43 29
JoB2 37 28
JOB3 39 24
JOB4 37 32
JOBS 51 32
JOB6 50 30

The job of scheduling can now of course proceed as normal.

116

Chapter 7

Cost Effective Ordering

In most cases, the proprietor of a business knows that it costs money to hold stock. This
‘stock-holding cost’ is of course a disadvantage and should of course be minimised. One
way of minimising the cost is to hold no stock, but then of course there are other
disadvantages associated with loss of goodwill, loss of production while waiting for goods,
loss of customers and money etc. Holding stock then, becomes a fine balance between the
advantages and the disadvantages.

Let’s for a moment consider the costs of holding an item of stock. Well there’s shelf space;
insurance; heating lighting and ventilation of stores; security; direct stores labour and of
course the ‘cost’ of the money invested in the stock. Now in a simple model for stock
systems all these costs are considered as a given percentage of stock worth. For example if
you held 100 items valued at £2.50 each and your company’s cost accountant told you that
it costs 15% pa of stock worth to hold that stock, then the calculation is:

100 x £2.5 x 0.15 = £37.5

i.e. if you held £250 worth of stock for a year it would cost £37.50. Now the 15% used in this
example will vary from company to company. For some the cost might be as high as 30%
whilst for others it might be as low as 2%. The simple model also assumes that there are
costs associated with placing an order. This cost will comprise paperwork, postage,
inspection when goods arrive, accounting etc. Now, again, this cost will vary from company
to company but a cost of £20 per order is not an unreasonable estimate.

Now let’s assume the company holds stock of a particular item of which it sells or uses 5200
units a year and gradually diminishes its stocks like this:

5200

Stock 2600

1 23 4 5 6 7 8 91011 12 pmonth
One Way Of Using Up Stock

FIGURE 7.1

117

In Figure 7.2, the 5200 items are delivered on day one and are sold over the following 12
months.

What does this cost?
Well, the average stock level is 2600 items (5200-2).

Let’s assume each item costs £3 and that the stock-holding costs are 20%. Given this, it’s
easy to see that the business’ stock-holding cost per item will be:

2600 x £3 x 0.2
/ \ \ % stock holding cost (20%)
Average number of units in stock
throughout the year unit cost

Now this comes to £1560. The cost of ordering now has to be added; assuming £20 per order
the total cost becomes:

£1560 + £20 = £1580

Now it will be argued that this cost could be reduced by ordering twice a year so that the
consumption curve looks like this:

Stock

1300

\ _—

T T T 1

1 2 3 4 5 6 7 8 9 1011 12

Another Way Of Using Up Stock

FIGURE 7.2

Thus the cost will be:

1300 x £3 x 0.2 + 40 = £820

)

Average stock level unit cost 2 orders at £20 each

Now given the massive reduction in costs simply by increasing the number of orders from
one to two each year, why not order each week?

118

Thus you will have:

50 X £3 X 0.2 + (52 x 20) = £1070

f

Average stock level (5200 + 50 + 2) Weekly orders at £20 each

As you can see, total costs have gone up again. So what is the best ordering frequency?

One way to find out is to design a LOGO procedure to work out the total costs for a given
quantity ordered. First of all, let’s tabulate the inputs:

1) The annual demand = D
2) The price of each item = P
3) The holding percentage = I
4) The cost of an order = C

Now consider the following:

3\ O*.Z
Number of orders per year :AV.ST*:P*:1 :HOLDING.COST+:ORDER.
l l COST ‘
“N.O” “AV.ST” “HOLDING.COST” “ORDER.COST” “TOTAL.COST”
1 2600 1560 20 1580
2 1300 780 40 820
3 867 520 60 580
5 520 312 100 412
10 260 156 200 356
12 217 130 240 370
15 1{3 104 300 404
Average Stock, this is calculated :N.O*:.C
by (:D+:N.O)+2 ? T
$
Annual Demand No. of orders per year Cost per order

No. of orders per year

119

Now you can see from the above table that the optimum average stock is about 260.
Consider the procedure ‘MINIMISE’ shown below.

to minimise

pr [WHAT'S THE PRICE OF THE ITEM?]
make "p item 1 rl

pr [NOW THE HOLDING PERCENTAGE]
make "i item 1 rl make "i i / 100
pr [WHAT IS THE ORDERING COS5T7?]
make "c item 1 r1

pr [HOW MANY ITEMS PER YEART]

make "d item 1 rl

Procedure MINIMISE

FIGURE 7.3

As you can see, ‘MINIMISE’ simply collects relevant information from the user,
remembering to reduce the holding percentage to a decimal fraction in line four.

Now have a look at ‘CALCULATELY’. This procedure will work out values for the various
types of costs associated with different order sizes in exactly the way demonstrated
previously.

to calculatel

make "av.st ((:d / in.0) / 2)

make "holding.cost ((3av.st * tp * 1) /
10

make "ordering.cost ((in-o0 ¥ fc) / 1@)

make "total.cost fholding.cost + forderi

ng.cost

pr tordering.cost

pr ftholding.cost

pr ftotal.cost

make "bl fn.o make "hZ ftholding.cost

make "cl :in.o make "cX iftotal.cost

end

Procedure CALCULATEI1

FIGURE 7.4

All will be clear in the above procedure apart from the last two lines. The variables B1, B2,
C1, C3 are being used to remember some values which will be of use in the next part of the
program. Notice also that the values of the costs have been reduced by a factor of 10. This
again will enable the next part of the program to proceed normally.

120

If you now type:

make "n.o 2
minimise

Then answer the various questions with:

3

20
20
5200

Now type:

calculatel

You will get
4 <— Ordering cost (£40)
78 <— Holding cost (£780)
82 <— Total cost (£820)

Now edit ‘MINIMISE’ to include this last line:

make "n.o 1 calculatel draw
Now let’s take a look at the ‘DRAW’ procedure.

If you wanted to, you could ‘MAKE’ ‘N.O’ to any value and re-run ‘CALCULATEL’ again
and again until you found an OPTIMUM value for ‘N.O’; i.e. one that minimised total

Costs.

This, however, is a bit mundane so let’s go to work on a procedure to display various costs
for corresponding values of ‘N.O’.

to draw
make "aZ iordering.cost make "al :in.o
make "bZ tholding.cost make "bl :in.o
make "cZ ftotal.cost make "cl fn.o
yraph
end

Procedure DRAW

FIGURE 7.5

Now the above procedure ‘DRAW’ simply ‘remembers’ some values, some of which are
already in store, and then moves onto the procedure which will plot the various values.

121

te gragh

Bt Ffd 120 ke 198 ¢t 99 fd 256 Li D90 1t
F@

sety fn.o ¥ 16 pu fd tordering.cost
make "al 1tem 1 tf make "2d item 2 tf
fd (tholding.cost - fovdering.cost)
make "I item 1 tf make "hd i1tem X Uf
fd (stotal.coust - thelding.costd

make "ciI item 1 tf make "cd item T tf
setpos (@ 9] pd setpos {(se fald iatl)d pu
setpos (se k1l 'h2) pd setpos (se 53 ih
o B B WK1

setpos {ee sl 1c2) pd setpos {ese P ia
Ay B
makte "kl fv.o ¥ 10 mabe "bI tholding.ros
t
make "cl tn.o * 16 mabe "cZ fftobtal.coust
calculateZ
pu home graph
erd

Procedure GRAPH

FIGURE 7.6

The first line of ‘GRAPH’ will draw the vertical ‘money’ (COST) axis 150 units long and
the horizontal ‘number of orders’ axis 250 units long.

The second and third lines will:

1) set the table to a value :N.O*10 (this has been done to stretch the scale
of the horizontal axis);

o

La)
-

10 units

The Operation Of GRAPH

FIGURE 7.7a

122

2) pen up and forward :ORDERING.COST;

A
t :ORDERING.COST

-

10 units

The Operation Of GRAPH

FIGURE 7.7b

3) MAKE “A3 ITEM 1 TF (10) and then MAKE “A4 ITEM 2 TF
(:ORDERING.COST).

A3 A4

s

The Operation Of GRAPH

FIGURE 7.7¢

This will ‘remember’ the position X=A3 and Y=A4.
The fourth and fifth lines will:

1) move forwards to B3 B4 and remember them.

* =— B3 B4

, -—— A3 A4

The Operation Of GRAPH

FIGURE 7.7d

123

The sixth, seventh and eighth lines will:

1) Remember C3 and C4

Total cost —= e «—(C3C4

Holding cost —» e <— B3 B4

Ordering cost —+ e =<+ A3 A4

The Operation Of GRAPH

FIGURE 7.7e

2) set the turtle to the origin and, with it’s pen down, move to A3,A4.

The Operation Of GRAPH

FIGURE 7.7f

The ninth line will:

a) set the turtle’s position to B1,B2;

Bl B2 —»

The Operation Of GRAPH

FIGURE 7.7g

124

b) move to B3, B4,

B3 B4

B1B2 p—e

The Operation Of GRAPH

FIGURE 7.7h

The tenth line will act in a similar manner to the ninth line.

ClC2 ¢— - C3C4

B1B? {————— B3B4

A3 A4

The Operation Of GRAPH

FIGURE 7.7i

The next two lines will now reset the values of B1l, B2, C1, C2 and move on to
‘CALCULATEZY’ before re-calling ‘GRAPH’

to calculateZ

pr [HOW MANY ORDERS PER YEARY]

make "n.o item 1 rl

make "av.st ({(2d / fn.0) / 2)

make "holding.cost ({(fav.st * p % i) /
19)

make "ordering.cost ({(in.o * fc) / 1@)

make "total.cost tholding.cost + :orderi

ng.cost

pr fordering.cost

pr tholding.cost

pr :ttotal.cost

end Procedure CALCULATE2

FIGURE 7.8

125

This simply asks the user how many orders a year to try. It then goes on to calculate the new
costs before ‘GRAPH’ re—calls itself ‘RECURSIVE’ activity) and the new costs plotted.

Now type:

¢S
minimise

Followed by:

3

20
20
5200

This will give you your costs (divided by 10) for the order a year and your screen will look
like the one shown below in Figure 7.9.

GRAPH’s Actual Output

FIGURE 7.9
Compare the costs with those calculated earlier in the chapter.

Now answer with:

126

and you will get:

Now try:

and you will see:

Two Orders Per Annum

FIGURE 7.10

Six Orders Per Annum

FIGURE 7.11

Notice that total and holding costs are decreasing whilst ordering costs are increasing.

Try 8

Then 12:

127

Up To Twelve Orders Per Annum

FIGURE 7.12

Notice that now the ordering costs are higher than the holding costs and that total costs
have levelled out.

Now try 15, 20 & 25.

sarmt"

......

Up To Twenty-Five Orders Per Annum

FIGURE 7.13

You can see now total costs rising quite steadily. You can of course achieve much smoother
curves by taking ordering intervals of 1 or 0.5.

In order to stop this procedure hit CTRL-G on a 6128 or ALT-G or STOP on an 8256 or
an 8512.

128

It’s fairly obvious that the ‘optimum’ order quantity is where total costs are a minimum and

this will be where the holding and ordering cost curves cross, i.e. where

HOLDING COST = ORDERING COST

Now the holding cost for any period is:

Average stock

order Q X P x1I
2

and the order cost is:

No. of orders per year
D
———— L
order Q

orderQ xPxI=__D xC
2 order Q

Thus

So
(order Q)? = 2DC_
IP

order Q = \/ZIE
IP

This is the ‘ECONOMIC ORDER QUANTITY’ expression.

129

130

Chapter 8

Stock Control In The Real World

In the previous chapter we considered the E.O.Q; i.e. the order quantity that would
minimise our stock-holding and ordering costs. However, if you look closely at the total
cost curve, you will notice that it has a fairly ‘flat’ bottom. This means that in terms of cost
you can in fact purchase in numbers after the EOQ without increasing costs by a significant
amount.

The E.O.Q model assumes that demand is absolutely constant; that replenishment of stock
is instantaneous (i.e. at same moment as order is placed); and that the company therefore
will never be out of stock. Now obviously none of the above assumptions hold true in the
real world. It might therefore be useful to try and design a procedure that will SIMULATE
stock behaviour so that a stock behaviour, ordering and safety stock model can be used to
predict future patterns of demand, allowing truly cost—effective stock control and
inventory reduction. The only assumptions made throughout this model are:

1) stock behaviour follows statistical rules;
2) the number of orders per week for the item is consistent.

Let’s suppose that the company concerned is selling SNODS and that analysis of previous
orders shows that:

6% of orders ask for 1 SNOD
8% of orders ask for 2 SNODS
10% of orders ask for 3 SNODS
12% of orders ask for 4 SNODS
14% of orders ask for S SNODS
14% of orders ask for 6 SNODS
12% of orders ask for 7 SNODS
10% of orders ask for 8 SNODS
6% of orders ask for 9 SNODS
4% of orders ask for 10 SNODS
4% of orders ask for 20 SNODS

(The last group of 4% take advantage of a price reduction for minimum order quantities of
20 SNODS).

131

Now if you were to construct a frequency distribution chart for the above items it would
look like this:—

Frequency

Quantity

Frequency Distribution Chart For Orders

FIGURE 8.1

Now let’s define a procedure called ‘SALES’ in which a variable QQ has been set to 50

numbers that represent the above percentages, for example the number 3 occurs five times,
i.e. 10% of 50.

to =zales

make “agg (1 1 1 2 2 2 2 3 23 33 44 4
d 4 4 9 58 5535668686667 77
7T aEEaEEaeE 9399 10 10 o 0]
el
Procedure SALES
FIGURE 8.2
Now if you type:
sales
pr :qq
you will get:
sales
?p [¥
1 1 1 2 2223333 3444d4dd755
5 5535 & 686677777788
S8 8 9993 10 1@ 20 20

The Contents Of QQ

FIGURE 8.3

132

Now try this:

pr shuffle :qq

SHUFFLE (shuffle)
This will output a previously defined list in a random order.

This will result in something that looks approximately like this:

e
56 7d4 5419756

£ S5 6 3 10 d 7 7 63 A
8 7 359 7 20 AT 892784853
S 31 02 201 10 & 2 4 F
Shuffled QQ
FIGURE 8.4

Now assuming that the size of the order the will be random (i.e. unpredictable), you can
say:

repeat 17 [make "xx item 1 + random 50 shuffle :qq
pr :xx]

You can see that you have repeated picking a random member from a shuffled list
seventeen times (the usual number of orders received each week). In this way we can
simulate a week’s sales. Having done that you might end up with a list of numbers similar to
the one shown below

133

Prepeat 17 [make "xx 1tem 1 + random S@
shuffle fgg pr 2xx]

DRI W | I < SN =

[

M oNE LR

A Week’s Orders Simulated

L8 =N

FIGURE 8.5

Now to simulate say 6 weeks trading, try saying:

repeat 100 [make "xx item 1 + random 50 shuffle :qq pr
2 xx]
You will see that the simulation is fairly good.
Let’s have some more information about the SNODS we are stocking and selling:
SNODS INFO
COST PRICE £6
HOLDING COST 12%
ORDERING COST £25 each order
ANNUAL DEMAND (average) 4900

Now armed with this information and using the E.O.Q formula

We can calculate the EOQ for SNODS.

This works out to be about 583 SNODS.

134

Now if we divide the annual usage (4900) by the EOQ we will see that orders for SNODS
should be placed 8.4 times a year, i.e. about every 6 weeks.

Thus we can say that:
‘We will order 600 SNODS every 6 weeks’
Now let’s define a few procedures to SIMULATE a year’s trading in SNODS.

Consider the “TRY’ procedure shown below.

tao try

make "ux £BO

repeat 102 [decrease]
end

Procedure TRY

FIGURE 8.6

Here you can see a variable XX set to 600 which in the EOQ; and a procedure called
‘DECREASE’ repeated 102 times: 6 weeks times 17 orders per week.

to decrease

pu osety fxx /%S seth 0 pd fd 0.5

make “"zz item 1 + random SO shuffle g
rt 90 fd dzz £ S

make "> w BEE

evnd

Procedure DECREASE

FIGURE 8.7
In the DECREASE procedure shown above, the turtle is at a vertical position equivalent to
XX (600), divided by 5 to get the curve on the screen. It will move to the right 0.5 units for
every order and will move down the screen by an amount equivalent to a randomly picked

order size.

Having defined these two procedures, you could say:

cS
sales
try

and you will receive pictorial representation of a typical 6 weeks’ trading in SNODS.

135

Now give the whole screen over to graphics display and say:

cs setx 300 set x =300 repeat 9 [try]

\\\ \ \\\\\ \\\

L \ \

5 \ T e
N

A Year’s Trading Simulated

FIGURE 8.8

You can see from the above simulation that on several occasions throughout the year the
company was out of stock of SNODS. (Count the number of orders below the horizontal

line.)
Now suppose the Managing Directors issued a memorandum saying:

“We must never be in a position whereby we cannot supply SNODS, but we should
maintain stock levels that minimise stock holding costs.”

Added to this you also have the problem that SNODS take two weeks to be delivered to
your company so your simulation must now look like this:

600+SS
Usage during lead time
Reorder point
A '
SS

0 1 2 3 4 5 6 7 8 9 10 11 12
Trading Allowing For Delivery Times

FIGURE 8.9

136

This means that at the end of week 4, SNODS will be ordered and that during the next 2
weeks, SNODS will be used. At the end of week 6 a new stock of SNODS will arrive and the
whole process will start again.

Now that point at which SNODS will be re-ordered will be after 4 weeks (68 orders from
customers). If however, during the next 2 weeks (34 orders) the demand is greater than
expected, a safety stock (SS) should fulfill customer needs.

The question now is:
How large should the safety stock be to

a) guarantee customer supply;
b) minimise stock holding costs.

Consider the SST (Safety Stock) and the “TRY?2’ procedures shown below.

to sst

pv [WHAT IS THE STARTING STOCK LEVEL?]
make "ssl1 item 1 1

pr [WHAT IS THE SAFETY STOCE LEVEL™T]
make "ssZ item 1 r1l

setup

repeat 9 [tryZ]

end

to tryZ

make "xx fssl + Isgd

repeat 102 [decreasel]
end

Procedures SST and TRY2

FIGURE 8.10
Now in answer to the first question, our answer will be 600, the EOQ. In answering the
second question, well it’s a matter of thinking of a number, trying a year’s simulated sales of

SNODS and seeing if an out of stock situation occurs.

The ‘SETUP’ procedure below simply draws the frame within which the simulation will
take place with horizontal lines indicating zero, safety and maximum stock situations.

137

to setup

s pu setx —-J00 pd fd4 S00 bk SO

sety 50 sety —~-360

fad s / 5 setx 409 sety -I00

kb isse S5 fd fssl / S+ iss? /D osetx
A6

setx -J0D@ sety @

erd

Procedure SETUP

FIGURE 8.11

This is quite a straightforward procedure. Notice the numbers have been divided by 5, asin
DECREASE, to allow the whole year’s simulation to fit on the screen.

If you now type:

CS
89
600
50

You will end up with a year’s trading simulation similar to the one shown below in Figure
8.12

A Better Simulation

FIGURE 8.12

Thus you can see that if you order every 6 weeks in lots of 600 and maintain a safety stock of
50 you should almost never be out of stock.

138

Chapter 9

Linear Programming.

Let’s imagine that you as a production manager of a manufacturing company are suddenly
faced with a problem. As the production manager, one of your primary objectives, for better
or worse, is to help maximise profits. Now as it happens a ‘production window’ has opened
up in your manufacturing schedules and as a result you have some spare capacity in three
production areas, ¢.g. machining, fabrication and assembly.

Imagine also that there are two products that require only the use of these three production
facilities. Call these products ONE and TWO.

Now 1 unit of product ONE requires 5 hours of machine shop time, 7 hours of fabrication
time and 14 hours in the assembly area. 1 unit of product TWO requires 12 hours in the
machine shop, 7 hours in the fabrication area and 7 hours of machine shop time. Given
these known times for the production of ONE and TWO and knowing the time available in
each of the production areas, you as production manager should be able to decide how
many of ONE and how many of TWO can be manufactured in the time available. First of
all however it will be necessary to know the profits on the two products ONE and TWO.

Well let’s assume that they are as follows:
Profit per unit on ONE = £10
Profit per unit on TWO = £20

How here are the time requirements again in a tabular form:

Production Time Time Available
Required
ONE TWO
Machining 5 12 600
Fabrication 7 7 560
Assembly 14 7 700

Now from the above table, you can see that the capacity available in each of the three
production areas has been expressed in production hours available (600 machining, 560
fabrication and 700 assembly).

139

Now to try and answer a major question:
‘How many ONE’s and how many TWO’s should I make?’
Well assuming that you can sell everything you make, you might say:
The most ONE’s I can process through the machine shop in the time available is:
600 + 5 = 120
The most ONE’s I can put through the fabrication area is 560 + 7 = 80.
The most ONE’s I can make in the assembly area is 700 + 14 = 50.

As you can see, the largest number of ONE’s that can be processed through all three
production areas is 50. If this were the chosen ‘mix’, i.e., 50 ONE’s and no TWO’s, the
resultant profit would be:

50 x 10 = £500
The same logic might also be applied to the production of TWOQ’s, as follows.
The most TWO’s I can process through the machine shop in the time available is:
600 + 12 =50
The most TWOQO’s I can make in the fabrication area is:
560 + 7 = 80
The most TWO’s I can put through the assembly area is:
700 +~ 7 = 100

Again there is a limit of S0 TWO’s that can be made. However, if 50 TWO’s were made,
thus meaning that no ONE’s could be made, the profit would be:

50 x 20 = £1000

Now it is quite obvious that from a profit of view it would be better to make 50 TWO’s for
£1000 profit rather than 50 ONE’s for £500 profit.

There is however still some doubt as to whether the manufacture of 50 TWO’s gives the
highest profit.

Now if the production manager were to plot the previously calculated figures, the optimum
production mix of ONE’s and TWO’s could be read from the resulting diagram.

140

Consider the axes shown below:

ONE
1304

120
110 1
100 1
90 4
80 1
70
60
50 1
40 4
30 1
20

10
TWO

10 20 30 40 S0 60 70 80 90100 110

Axes for a Linear Programming Graph

FIGURE 9.1

Now the vertical axis represents the number of product ONEs and the horizontal axis
shows the number of product TWOs.

You will remember that if the production manager considers the machine shop, the can
make either 120 ONE’s or 50 TWO’s.

Ifthese two points are plotted and a line drawn between them, the diagram will look like the
one shown in Figure 9.2.

Within the shaded area created by the line drawn between 120 ONE’s and 50 TWQ’s, a
variety of decisions can be made. For example at point X 20 ONE’s and 20 TWO’s might be
put through the machine shop. Or at point Z, 80 ONE’s and 10 TWO’s might be produced.
What you have done is to construct a constraint line which shows the limits on the choice
of ONE’s and TWO’s that can be produced in the machine shop in the time available.

However, the production engineer will be constrained not only by machine-shop capacity
but by the fabrication capacity and by the requirements of the two products.

141

ONE
130

20 1

TWO

T T - ag T T T -

10 20 30 40 50 60 70 80 90100 110
Machine-Shop Production

FIGURE 9.2

Now you will remember that the most ONE’s that can be produced is 80 and the most
TWO’s that can be produced in the fabrication areas is also 80. Thus, plotting the
fabrication constraint, the diagram now looks like this:

142

ONE
1304

120 §
110 4
100 1
90 -
80 1
70 4
60 4
50 1
40 +
30 A
20 1
10

T v T A : v T b § v Two
10 20 30 40 50 60 70 80 90100 110

Adding the Fabrication Constraint

FIGURE 9.3

You will now see that the second constraint has reduced the number of choices available,
e.g., 80 ONE’s and 10 TWOQ’s is no longer a viable choice because it doesn’t fall within the
shaded area; i.e. it does not satisfy both constraints.

Now for the third constraint, that of the assembly area. You will remember that either 50
ONE’s or 100 TWO’s can be processed. When you plot this constraint, the diagram will
look like this:

ONE
1301

120 1
110 1
100 1
90
80 4
70
60 1
50 4 P
40 1

1L ey e ,
20 1 i

b N N N TWO
40 50 60 70 80 90100 110

1'0 2'0 3,(7

Adding the Assembly Constraint

FIGURE 9.4

The introduction of the third constraint has reduced the choice even further and produced
a shaded area known as the feasible region. This simply means that any mix of ONE’s
and TWO’s picked from this region can be produced (i.e., fulfil the constraint require-
ments). You will note that it is possible, if we wanted to, to produce 50 TWO’s and 0 ONE’s
thus making a profit of (50 X £20) £1000.
However, this might not be the best mix to maximise profit.
Why not consider point ‘P’?

Well, it looks as though 36 TWOs can be produced and 32 ONEs.

143

Let’s see what sort of profit this will bring about:
32 x £10 = £320
36 x £20 = £720
TOTAL £1040
Now check to see if 32 ONE’s and 36 TWO’s can be produced.
(32 x 5) + (36 x 12) = 501 hrs
(32 x7)+ (36 x7) = 476 hrs
(32 x 14) + (36 x 7) = 700 hrs

So it looks as though there is capacity to spare in the machine shop and fabrication areas,
but none to spare in assembly.

Now for some procedures to help with similar ‘LINEAR PROGRAMMING’ problems.

First of all, a small procedure to help draw the diagram axes.

T3 tainy
fd S vt 90 fd 2 bk 2 1t 30
@i

Procedure TINY

FIGURE 9.5
The ‘TINY’ procedure will draw a small division of one of the diagram’s axes.

Now you could say:

CoAN1z

repeat 36 Tvipy]
piuoz2tpos (O @]
pd ot @
reveat 39 {tiny]
sstpos [@] seth ©

evid
Procedure AXIS

FIGURE 9.6

If you define “TINY’ and ‘AXIS’, and call AXIS, a pair of axes should be drawn.

144

The Axes

FIGURE 9.7

Now for a procedure to collect sufficient information to allow Logo to perform the
graphical solution to a problem.

to collect

pr (se "HOW "MANY "HGOUFS "AVAILABLE "IN

"AREA "AT)

make "a 1tem 1 rl

pr (se "AND "IN "EBT)

make "h item 1 1l

pr o f{se “AND "CT)

make "¢ 1tem 1 1

ct pr (se "NOW "THE "PRODUCTION "TIMES "
FOR "THE "TW)

pr [PRODLUCTS]

pro (se "HOW "MUCH "TIME "DOES "PRODUCT ¢
DONE "NEED)

pr (se "IN "AREA "AT)

make "onea 1tem 1 rl

pr (se "AND "IN "AREA "B

make "ornelk item 1 rl

pr (se "AND "IN "CT)

make "ornec item 1 r1

ct pirr (se "HOW "ABOUT “THE "TIME "FOR "P
RODUCT " TW)

pr (se "IN "AREA "A™)

make "twoa item 1 r1

pr (se "NOW "FOR "PRODUCT “TWO "IN "B™)

make "twoh item 1 rl

pr (se "AND "IN "C™)

make "twoc i1tem 1 1

ernd Procedure COLLECT

FIGURE 9.8

145

You will notice that this is quite a straightforward procedure to collect information from
the user and allocate it to various variables.

The production areas of machining, fabrication and assembly are referred to as areas ‘A’,
3 <
B’ and ‘C’.

Using the times from the previous example and responding to the ‘COLLECT’ procedure
correctly you will have set the variables in the following way:

a is 600
b is 560
c is 700
onea is 5
oneb is 7
onec is 14
twoa is 12
twob is 7
twoc is 7

and these relate in matrix form like this:

ONE TWO
5 12 600
(onea) (twoa) (a)
¥ A 560
(oneb) (twob) (b)
14 7 700
(onec) (twoc) (c)

Now to represent this data as a series of constraints, thus enabling a solution to this
problem via linear programming. Consider the procedure ‘DRAW’ shown below.

to draw
axis
sety fa / fonea
setpos (se a / itwoa @)
setpos (@ @]
sety th / ifoneh
setpos (se th / iftwoh ©@)
setpos [@ @]
sety fc / ‘fonec
setpos (se ic / ftwoc @)
setpos [© @]
end
Procedure DRAW

FIGURE 9.9

146

Now the first line calls ‘AXIS’ and draws the necessary frame within which the constraints
are to be plotted.

In the second line:

sety :a / :onea

The turtle will move to a position along the y axis equal to 600 + 5 (120).

In the third line:

setpos (se :a / :twoa 0)

The turtle will move in pendown mode to a position along the x axis equal to 600 + :12
(50).

Thus the first constraint has been constructed.

The second and third constraints are illustrated similarly and having called ‘DRAW’, your
screen will look like this:

147

ONE
1304

120 1
110 4
100 1
90 4
80 -
70
60 1
50 4
40 4
30 4
20 1
10 4

T v T T T T {3 v v Two
10 20 30 40 SO 60 70 80 90100 110

The Final Result

FIGURE 9-10

Now you might just be able to read off the values for products ‘ONE’ and “TWQO’ but just to
check that the procedures work correctly type:

rt 90 fd 36 1t 90 fd 32
1t 90 fd 36 ht

which confirms the correctness of the procedures.

You could of course introduce more constraints if you wanted to — as perhaps your first
steps on your own into the world of Logo.

148

Appendix 1

Loading Logo on the 8256 and 8512

Before you can load Logo, you first of all have to load CP/M. To do this, you should carry
out the following steps.

1)

2)

3)

4)

If your computer is switched on, reset it by removing any disc from the
drive(s), then tap the EXIT key whilst holding down SHIFT and
EXTRA. Then release SHIFT and EXTRA. Ifinstead your computer
is switched off, make sure there is no disc in the drive(s), then switch it
on. The screen should be bright green.

Find side 2 of the system discs, and place the disc in the drive (or
topmost drive if you have two) with that side facing left. There should
be no need to force the disc in, it should slide in easily and click into
place. If it doesn’t, you are putting it in incorrectly.

Tap the space bar once. After much whirring of the disc drive, the
screen will come up with something like this:

PCW8256 CP/M Plus Amstrad Consumer Electronics plc
v 1.0, 61K TPA, 1 disc drive, 112K drive M:
A>

When the ‘A>’ prompt appears, CP/M is loaded.

Having loaded CP/M, the next job is to tell CP/M to load Logo.

1)
2)
3)

4)

Remove the CP/M system disc from the disc drive.
Place the other system disc into the drive, with side 4 to the left.
Type

submit logo

Logo will now load. The screen will come up with the message shown
on page 12 as it is loading, so you can now turn back to page 12.

149

150

Appendix 2

Editing Procedures on the 8256 and 8512

Let’s say that we want to make a couple of changes to a particular procedure. Suppose, for
example, we wish to change the shape of the square in a ‘SQUARE’ procedure.

In the event that this particular procedure is not in your computer, type it in as below:

to square
fd 50

1t 90

fd 25

1t 90

fd 50

1t 90

fd 25

1t 990
end

Now type ‘cs square’ and run the procedure.
yp q p

Having done this, your screen might look something like the one shown below in Figure
A2.1.

SQUARE Procedure

FIGURE A2.1
Let’s now have a look at the method provided in Logo by which we can insert new
commands in previously defined procedures and also erase and/or replace commands. In

other words, the facility to EDIT any procedure already stored in the computer.

151

EDIT (ed)

This is a Logo command which puts the user in touch with the Logo editor.
In this mode the user will be able to change any previously defined
procedure.

Now type ‘square’ and run the procedure. Having done this, next type:

ed "square
On pressing RETURN the screen will change and a listing of the procedure will be given.
Note that the name of the procedure is preceded by double inverted commas (). It is
important that you use double and not single inverted commas, otherwise the computer

will not recognise the entry as a procedure name.

The screen changes, ready to make alterations to the procedure. At the moment the screen
looks as shown in Figure A2.2

to square

fd 5@
1t 99
fd 25
1t 99
td 50
1t 98
fd 25
1t 99
end

Drive is A: 4)

The Edit Screen

FIGURE A2.2

Let’s assume that you want to change the distances in the ‘fd 25’ commands. The first thing
to do is move the cursor to the first line to be changed. To move the editing cursor you can
use the arrow keys on the right of the keyboard. Press the down—arrow key three times (or
ALT-N if you prefer) and this will move the cursor down (don’t hit RETURN during this
operation). Having selected the third command (fd 25) for modification, you can now
delete the 25 by hitting the <—DELete key twice and type in say 50.

DON'T HIT RETURN YET

152

You can now bring the cursor down to the end of the next ‘fd 25’ command by use of the
down-arrow key (or ALT-N). Then move it to the left one place by hitting the left-arrow
key (or ALT-B) once. You are now in a position to delete the 2’ and type in a ‘S’. The cursor
is now over the ‘5’ of the ‘fd 25’ command. Now move the editing cursor one place to the
right by hitting the right-arrow key (or ALT-F) once. You can now delete the ‘5’ and type
in a ‘0’. Having changed the necessary commands, your screen looks like the one shown

below in Figure A2.3.

/ to square

fd 50
1t 99
fd 5¢
1t 99
fd 5¢
1t 90
fd 5@
1t 9¢
end

Edit
k Drive is A:

The Edited Procedure

FIGURE A2.3

You are now ready to leave the Logo Editor and to do this you must hit

EXIT

Will the new version of ‘square’ work? Try it by typing ‘square’.
Let’s now examine an edit where we want to insert a new command in a procedure.

Imagine you want to put a ‘hideturtle’ command in at the beginning of the procedure. Type:

ed "square

You should now be in edit mode with the procedure listed. You will notice the cursor in its
usual position at the end of the first line of the procedure. It is now intended to insert the
command ‘ht’ as the new first line. Now to open up a space for a new first line you can hit
RETURN.

Try it a few times and see the effect: your screen will look a bit of a mess, so all you have to
do is hit the STOP key.

153

You will now receive a message saying:

Stopped!
Now type

ed "square

and you will see that your original procedure is safe and sound. Now to put the ‘ht’
command in as your new first line, hit

RETURN

Now type ‘ht’ and your new first line will appear on screen. Now hit

EXIT

Suppose we wanted to rub out a command? The first thing we must do is to get back into
edit mode. Type:

ed "square

Now there is the procedure; let’s imagine that the ‘ht’ command is no longer necessary. DR
Logo uses various ALT characters to control the screen display and cursor movement and
these can be used to supplement the use of the keys already described. Try experimenting
with a few of them before proceeding.

ALT - A will locate the cursor at the beginning of the line at which it is currently
situated.

ALT - E will move the cursor to the end of its current line.

ALT - H will act like the<—DELete key and remove the character to the left of the

cursor.

ALT =D deletes the character covered by the cursor.

ALT - 0 will open up a space on the screen (try this with the cursor at the
beginning of a line).

ALT - B moves the cursor back.

154

ALT - F moves the cursor forwards.

ALT - N moves the cursor down a line.
ALT - P moves the cursor up a line.
ALT - C ends the editing and re—defines the procedure just like the ‘EXIT key.

Note that on your particular model of computer, you fnay find that some of these control
keys will only work in EDIT mode. Also, you may not be able to use the arrow keys to move
the cursor, or use the EXIT key to complete the edit.

Well, if you can, you might like to stay with the arrow keys until you become a little more
experienced and so in that case, hit the down—arrow key once (else ALT-N) and use the
<—DELete key to take out ‘ht’. Now you can use the «~ DELete key a third time to finally
delete the line, then hit ALT-C or EXIT to re-define the procedure.

Review of Progress
By now you are in a position to create almost any pattern you wish, to move the turtle to any
required screen position, to draw, store and recall procedures, and then call all these moves

and procedures up by nesting them into a final procedure. All this can be achieved using
combinations of these commands:

Drawing Mode

(fd) FORWARD number Positive or negative.

(bk) BACK number Positive or negative.

(rt) RIGHT number (Degrees of turn 0 to 360 + or -).

(1t LEFT number (Degrees of turn 0 to 360 + or —).

(cs) CLEARSCREEN Wipes clear the screen.

(to) TO PROCEDURE Defines a procedure name.

(repeat) REPEAT number Enables repetition of whatever is in [command
list]the square brackets.

(pu) PENUP Enables turtle to lift its pen off the

paper and move it to a given position on the screen
without drawing a line.

(pd) PENDOWN Places the pen (turtle) in drawing mode.
(st) SHOWTURTLE Makes the turtle visible.
(ht) HIDETURTLE Hides the turtle and reduces the time taken for a

procedure to be carried out.

(end) END Used to finish off all procedures

155

Edit Mode

ed “name
arrow keys
ALT - A
ALT - E
ALT-H
ALT - D
ALT-0
ALT - N
ALT-B
ALT - F
ALT -P
ALT-C
EXIT
STOP

Lists the procedure to be altered in the edit mode.
Keys used to move cursor while in edit mode.
moves to line start.

moves to line end.

removes the character and moves to the left.
deletes the character below the cursor.

opens up a space in the procedure.

moves the cursor down a line.

moves the cursor back.

moves the cursor forwards.

moves the cursor up a line.

ends editing session.

ends editing session as well.

used to leave edit mode.

Now return to page 26.

156

Appendix 3

Formatting Discs on the 8256 and 8512

Well, as you may well already know you can save your Logo procedures on a disc. Now in
order to get a new disc ready to receive your procedures you will have to FORMAT it.
When a disc is FORMATTED, it is divided up into original tracks and sectors ready to
receive data. If your blank disc has not been FORMATTED, just follow this method.

1)

2)

3)

3)

6)

7)

8)

Reset the computer by pressing SHIFT, EXTRA and EXIT simul-
taneously. Then load CP/M in the usual way (see the first part of
Appendix 1 if you’re not too sure about this).

When you see the message ‘A>’, type:

disckit
and this message will be displayed after a short pause:

Please remove the disc from the drive.
Press any key to continue.

Do as it says!

The display will change to show a menu. Press 3.

A new message will be displayed. Place the disc to be formatted into
the drive (topmost drive if you have more than one) with the side to be
formatted facing left. Make sure that it is not write protected — the little
hole in the top left corner of the disc should be covered by the little
plastic tab. Remember also that formatting a disc destroys all
information currently stored on it, so make sure you use a disc that has
nothing important on it.

Press the Y key when you are ready. The screen will clear and the
computer will count through the 0-39 tracks as it formats the disc.
When it has finished, remove the disc and tap the space bar. You can
then eithr format another disc (or the other side of the current one) or
return to the other menu. Assuming you don’t press Y, but some other
key (e.g space), then press EXIT.

Place the system disc with side 4 facing left into the drive and type

submit logo

Logo will now re-load. Go back to ‘Having formatted your disc...’ on
page 28.

157

158

Index

A

ALT key 20
analysis
decision 51
investment 87
AND 48
arithmetic 16

B

BACK 13
bar chart 31, 33, 34
BK 13

C

catalogue of disc 29
circle 18

CLEAN 36
CLEARSCREEN 15
CLEARTEXT 68
condition testing 48
compound interest 97
constraint line 141
CP/M 12, 27, 149, 157
CS 15

CT 68

CTRL key 20
cursor 12

D

decision
analysis 51
making 48
direct mode 17
DIRECTORY 29
disc
catalogue of files 29
dir 29
DIRECTORY 29
formatting 27, 157
language 12, 149
system 12, 149

E

editing procedures 20, 152

Economic Order Quantity 131

ED 20, 154

EDF 30

EDIT 20, 152

EDIT FILE 30

END 17

E.0.Q. 131

ERALL 29

ERASE FILE 31
exponential smoothing 85

F

FD 13

feasible region 143

File 29, 30, 31

flag 109

formatting disc 27, 157
FORWARD 13

frequency distribution 132
FS 19

FULLSCREEN 19

H

HIDETURTLE 16
histogram 31, 33, 34
HOME 39

HT 16

I

IF 48

inputs 54

interest, compound 97
interrupting procedures 20
investment analysis 87
ITEM 41

159

K

key words 18

L

LEFT 14

linear programming 141
LOAD 30

logo language disc 12, 147
LT 14

M

MAKE 31
mathematics

rules 16

operators 16
Monte-Carlo analysis 39

N

nesting 18
NODES 82

P

parameters 25
PD 17
PENDOWN 17
PENUP 17

pie chart 35
POALL 101
polygon 16

PR 39,55
primitive 18
PRINT 39,55
procedure 17
production scheduling 105
PU 17

R

RANDOM 38
READLIST 54
REPEAT 15
RIGHT 14
ROUND 75
RL 54

RT 14

160

S

sales forecasting 65
SAVE 29

SE 57
SENTENCE 57
setting variables 31
SET 36

SETX 36

SETY 36
SETPOS 37
SETSPLIT 19
SHOWTURTLE 16
SHUFFLE 133
smoothing 85
SPLITSCREEN 19
SS 19

ST 16

STOP 18,70

key 20

Stopped! 20
system disc 12, 149

T

TF 41

TO 17

top level 17

TRUE 48

turning 14

turtle 13
TURTLEFACTS 41

\%

variable 31

w

weighting 53

workspace 29

words, key (primitives) 18
writing to screen 39, 55

PRACTICAL LOGO
on the
AMSTRAD

This book is about practical applications of Logo. Rather than
using the more usual graphics-based approach, it shows how
Logo can be used to write programs on serious topics such as
decision making, simple investment analysis, sales forecasting
and stock control.

The book moves quickly from a brief introduction to Logo for
those who are not familiar with the language, to various case
study areas for which procedures are developed in later
chapters.

The approach of this book is exploratory; it is an attempt to
broaden the Logo user’s horizons well beyond simple graphics
applications.

ISBN 1-85181-04k-3

Glentop Press Ltd
Standfast House
Bath Place
Barnet
51"810468

Herts EN5 5XE £6'95

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164

