

PCW
SUPER CODE

PCW

SUPER CODE

M. Keys

B.Sc.

Spa Associates
Spa Croft, Clifford Rd, Boston Spa, LS23 6DB

Acknowledgements

This book is based on my experience of using information derived
over the years from books and periodicals, to the writers of which I
would like to express my thanks. In addition I am indebted to lain
Stirzaker and Geoffrey Childs who supplied extra material, and were
patient. Geoffrey Childs also performed the invaluable service of
proof reading the manuscript. The information belongs to others, the
mistakes are all mine.

Notice

CP/M’, ‘CP/M Plus’, ‘Amstrad’, ‘PCW 8256¢',
PCW 8512’, and ‘PCW 9512’ are trade-marks.

© M. Keys 1990

All rights reserved. No reproduction in any form may be made with-
out written permission.

No paragraph of this book may be made, reproduced, copied, trans-
lated, or transmitted without written permission in accordance with
the Copyright Act 1956 and its amendments.

The assessment of the suitability for use of the information in this book
in particular cases is the responsibility of the user. Neither the author
nor the publishers accept responsibility for any consequence of its use.

First published April 1990

ISBN 1 871892 01 5

CONTENTS

1. Aims ... 7
2, The Set-Up 9
3. Time & Again 24
4. Forgive the Interruption 37
&, BacktoFont 50
6. Basics of Screen Printing 69
r Basics of Screen Addressing 78
8. Screen Manipulations 94
9, Character Manipulations 107
10. Basics of Menu Design 121
11. Key-press Menus 126
1. Cursor Menus 134
13. Loading Screens 142
14. Miscellaneous Output 162
15. Miscellaneous Input 168
Appendices :
1. Equivalent Addresses 182
2 Draft Font Data 184
3. NLQ FontData 188
4. Block Switching 194
B, Keyboard Memory Map 198
6. Contents of Memory 200
s Screen addresses 202
8. Im 2 programming 204
Boals s v wa s moe o ow o4 210

INDEX = s x5 53 s w8 5 # & 212

Chapter 1

Aims and Intentions

This book is the sequel to my PCW Machine Code, also published by
Spa. ;

Its aim is to provide a more detailed description of using machine code
to get the very best out of the PCW 8256, 8512, and 9512. In it 1
emphasise screen control because the screen is the most direct, and
perhaps the most directly interesting, contact that is usually made
with a computer. But in addition it also deals in detail with other
important subjects that readers of my earlier book have expressed an
interest in. These include Character Manipuations, Interrupts, Tim-
ing, Printer Fonts, and Loading Screens.

To obtain most advantage from the book you will need either to have
read my earlier title and to have obtained a little practice with the in-
formation contained in it, or in some other way to have become famil-
iar with the Z80 Instruction Set and the methods of using it.

Nothing here is complicated but it would be a waste to have to go over
earlier ground a second time so I will assume that you do at least
know what machine-code is.

8 PCW Super Code

When writing program examples I will give the usual Z80 mnemon-
ics that you can input through your assembler if you have one, but be
warned that I do not use a commercial assembler myself so I tend to be
a bit lax with the details of syntax: I might occasionally drop the odd
comma or miss out a space or two, so don’t rely on copying my
version verbatim.

I'will also give the machine code bytes of the sub-r alongside the mne-
monic, and these will be in decimal. The logic of this choice is that
programmers familiar with hex will probably be using an assembler
and will not be interested in the opcodes nor how they are written. On
the other hand programmers who, like myself, input the opcodes di-
rectly into memory will find decimal much easier to key in than hex,
and correspondence with readers of the earlier book has indicated that
a majority of those who mentioned the choice were grateful for the
decimal version. So decimal it is.

Even so, to cut down as much as I can on programming frustration for
the minority, I have included Appendix 1 that lists the addresses re-
ferred to in the text in their decimal, hex, and ‘red-biro’ equivalents.
‘Red-biro’, incidentally, is my own idiosyncratic (but terribly sen-
sible) way of writing addresses as two decimal bytes; they are written
in brackets with a comma between, low-byte first.

Chapters 6 and 7 summarise the factual aspects of how to access the
screen and what the Screen Data is and how to manipulate it. To
readers of PCW Machine Code this may seem to be partly a duplica-
tion, but not everyone has read that title (not yet anyway), and even
for those who have it is no bad thing to have the subject matter ex-
panded and collected into a single space from the several chapters
through which it was previously dispersed.

When referring to the Amstrad manuals, I will give the page number
for the 8256 & 8512 first, followed by the corresponding page of the
9512 manual enclosed in square brackets.

I hope this volume is enjoyed as much as the earlier one seems to have
been, and, as was the case with that one, I am always grateful to
receive comments and suggestions from readers, even though (and I
apologise in advance) I may not always be able to reply on an individ-
ual basis.

Chapter 2
The Set-up

THE MEMORY MANAGER

The PCW operatesa ‘banked’ memory system, each bank consisting
of 64k (see PCW Machine Code). Access to most of the blocks within
these banks is provided by a CP/M routine called the “Memory
Manager” (see Appendix 4) that starts at address (33,253) for the
‘8256" and the ‘8512, but at (45,253) for some ‘9512° machines
(CP/M version 2.1) and at (58,253) for others (CP/M version 2.9).

To use it, the A register is first loaded with the number of the bank
required and then a call is made to the relevant address. Thus to
switch bank 0 into circuit, the assembler sequence would be:

Ida,0 62 0
call MEM-M 205 33 253

In fact, on behalf of speed, I would use ‘xor a’ instead of ‘Id a, 0/
and it just so happens thata ‘xor a’ instruction precedes the routine,
so in the particular case of summoning Bank 0 you can simplify your
code by calling the stated addresses minus one, ie. call (32,253), or
(44,253), etc.

10 PCW Super Code

Switching to Bank 1 is a much used operation because Bank 1 con-
tains the TPA, and every time the system returns from a foray into the
nether regions of CP/M that is effectively what it needs to do, and
every time you use another bank that is what you need to do also. The
operation looks like:

lda, 1 62 1
call MEM-M 205 33 253
continue . . .

Routines that you use to access the memory disc should be in Com-
mon Memory, as should your stack. The COM file stack and the
CP/M stacks are in block 7, but the one used by Mallard Basic and
some other applications is not. The common stacks are constructed
under the following addresses:

COM file (0,246)
CP/M (8256/8512) (74,255)
CP/M (9512) (24,255)
Mallard (74,111) approx

To make sure that the current stack is in block 7, use:

ld (AA), sp 237 115 A A Save this stack address

ld sp, New 49 B7 B7 Make another in Block 7
T Your

% 5 routine

ld sp, (A,A) 237 123 A A Recover the original stack
continue . . .

When selecting (B7,B7), you can use the safe area of whichever of the
listed stacks will not be used for other purposes.

THE BIOS JUMP BLOCK ROUTINES

Bank 0 (see Chapter 7 & Appendix 4) contains a jump table to a set
of BIOS routines that can supply useful information concerning the
configuration of the machine and other matters. The standard means
of access to them is through the CP/M so-called ‘USERF (‘user
function’), which is used as follows.

Get the address that is stored at (1/2,0), whichis (3,252). To this add

Chapter 2 1 1

87 to produce the 7Jump USERF address’, the value of which is
(90,252) in the case of the PCWs. Calling or jumping to this will give
access to the BIOS routines covered by USERE In addition, you
need to supply the address of the individual function you want in the
form of an in-line parameter, and also to supply any other data re-
quired by the function in the appropriate registers. The ‘in-line’ pa-
rameter is supplied ‘in-line with’ (immediately following) the last
call preceding the use of ‘USERF'. If the address of the required table
entry is to be (X,X), the listing could be on the lines of the one shown
below.

This is a form I have used before, and it has the advantage of being
one that applies in any CP/M environment. I have also used it to
develop the modular approach that I will describe later.

Id hl, (1,0) 4210 Jump-USERF

Id de, 87 17 87 0 address

add hl, de 25 into HL

Id (A A),hl 34 A A and store

call BB 205 B B

DEFW X X The address of the

* continue..... particular function

Address (B,B):

ldbc, NN 1 NN Load whatever

ldde, NN 17 N N feed-data

lda, N 62 N is meeded

ld hl, (A A) 42 A A And jump to the

jp (k) 233 Jump-USERF address

However, once you know that your machine will always produce
(90,252) [but check the value that your machine produces for this
address] as the Jump USERF address, then there is no reason to
stick to this particular layout. Indeed some of the following examples
use an exactly equivalent but visually different pattern, as in:

ldbc NN 1NN
ldde NN 17 N N
lda, N 62 N

call USERF 205 90 252
DEFW X X

* continue....

12 PCW Super Code

In most cases not all of the registers need to be loaded like this with
feed data before using USERF; but when I describe the function I will
say what data is needed.

The use of the in-line address might seem a bit convoluted, but the
address is passed without needing to load it into a register-pair, which
may or may not strike you as justification. The in-line technique is
possible because the address to be returned to after the ‘call’ is, as
usual, at the top of the stack. This is collected from the stack, the in-
line entry is extracted and the true return address (incremented by 2)
is put onto the stack to replace it. When the call has been completed,
the return is made to the place marked by the asterisks so the rest of
the program will run from there.

It is necessary to use the USERF approach for complex functions such
as the Screen Run Routine, but to utilise the simpler ones I choose to
use the simpler approach of switching-in bank 0 through the Memory
Manager, because bank 0 contains block 0, which is where the re-
quired jump table resides. All that is needed then is to load the feed-
data into the required registers, make a call to the appropriate place in
the table, record the returned data, and then switch back to the TPA.
The generalised listing is to the pattern:

call Bank_0 205 32 353 Switch in bank 0
.............. Load the
.............. data, make
.............. the call, &
....... record the returns
ldal 62 1 Back to the
call MEM_M 205 33 253 TPA

continue....

The jump table starts at (128,0) and'the entries in it are each three
bytes on from the one before, ie. at (128,0), (131,0), (134,0), ... etc.
Some of the more useful ones are as follows.

MACHINE SPECIFICATION

The next two routines make it easier to write portable software be-
cause by interrogating them your program can discover which envi-
ronment it is operating in.

Chapter 2 1 3

Machine type (227,0)

This could be helpful if you are writing software for unknown ma-
chines, though I confess ignorance as to the full details. It returns ‘1’
in A for the ‘8256" and ‘8512, and probably some other number for
the ‘9512'.

Machine configuration (230,0)

This supplies enough information to make up for my ignorance con-
cerning the previous entry. The returned data is as follows:

Areg ‘0" = onediscdrive fitted
‘255" = two drives

Breg Number of memory blocks (16 or 32)

g 2

no serial interface
serial interface fitted

I

HL pair Address in block 7 of buffer table

On my machine the buffer table [at (232,255)] contains three entries
of five bytes each. These entries show that there are three buffers in
use, and give their details as follows:

Byte 0 Bank number

Bytes 1& 2 Buffer address
Bytes 3 & 4 Buffer size in bytes

Which version ?

It is equally helpful in discriminating between operating environments
if your program is given the means of finding out which version of
CP/M isin force. Because the versions vary slightly in the locations
of their routines their jump tables vary a bit in the addresses they use.
For example address (10,252) may contain one of the following bytes,
so inspect it to determine the Version No:

Version 1.1 38 Original ‘8256 version
Version 1.4 38 Main ‘8256/512’ version
Version 2.1 50 Original ‘9512" version
Version 2.9 48 Latest “9512" version

14 PCW Super Code

SCREEN ROUTINES

The following five routines relate to various screen operations or pro-
vide information about it.

Screen data (191,0)

This facility is mentioned in Chapter 6 as a means of obtaining the
cursor position, but it also reports on the current screen size as well.
The full set of normally returned parameters is

Top line number (0)

Left column number (0)
Bottom line number (30 or 31)
Right column number (89)
Present cursor line (0to 31)
Present cursor column (0 to 89)

HTEHO O ®

Screen reset (194,0)

This clears the screen, moves the cursor to the top left, and initialises
the screen settings to their default values (which are listed above).

Status line ask (197,0)

This asks whether the status line is enabled or not. The reply isin A.
If A returns zero then the status line is disabled indicating that the
line has been incorporated back into the normal screen thus giving it
32 text lines. A value of ‘255" indicates that the line is enabled, thus
reducing the screen text size to 31 lines.

Status line set (200,0)

This enables or disables the status line according to the value in A
when the routine is called. Zero disables the line and ‘255 enables it.

Screen Run Routine (233,0)

This major routine is the primary means of accessing the screen and
character data in block 2, which cannot be accessed through a num-
bered block. The ‘modular approach described in Chapter 7 em-
ploys the conventional route via USERF to the Screen Run Routine
because the screen- and character- data in block 2 are needed.

Chapter 2 1 5

Before using the Screen Run Routine, the address of your manipulat-
ing routine (which must be in common memory) must be put into
BC.

Once blocks 7,2,1,and O (the Screen Environment) are in circuit, the
addresses of interest are:

Screen data (48,89) to (47,179)
Roller RAM (0,182) to (255,183)
Char matrix RAM (0,184) to (255,191)

KEYING ROUTINES

The following routines relate to various aspects of keyboard use.

Key detect (218,0)

This useful routine simulates BDOS fncs 1 or 6, except that more in-
formation is provided. The carry flag indicates whether there was a
keypress or not (ie. whether there is anything waiting in the keyboard
buffer):

Cy set Key pressed

Cy reset No key pressed

If a character is available its key-number (see the manual on redefin-
ing the keyboard, page 109 [544]) is returned in C, butif Cy is
reset then the contents of C will be uncertain. Whether any of the
shift keys were also pressed will be indicated by the bits of the
B register as follows:

bit 0 1 not used

bit 1 2 ‘EXTRA’

bit 2 4 ‘CAPS LOCK’

bit 3 8 Repeated key
bit 4 16 ‘NUM LocK’

bit 5 32 ‘SHIFT’

bit 6 64 ‘SHIFT LOCK’
bit 7 128 ‘ALT

Bear in mind that the routine searches the keyboard buffer and reports
on each character or token that it finds there. So if you press ‘suiFr’
and then also ‘a’ to give upper case “A”, it will detect the sHIFT first

16 PCW Super Code

and then the shifted ‘a’, so you will need two calls in succession to
obtain this information. The two will return the following data:

1st call Creg2l Breg32 (‘sHiFT shifted)
2nd call C reg 69 B reg 32 (“a” shifted)

If you want details of all the keys that have been pressed but you don’t
know how many have been, you will keep calling the routine until Cy
is returned reset. And if you want information on all key-presses
whenever they are made, you will do what the machine does, which is
to call the routine at interrupts (at every 6th interrupt in fact).

Bit 0 is not used. A key held down is supposed to set bit3 of B, but
it doesn’t do that for me. There is no actual ‘caps Lock’ key, but this
function is provided by ~ALT + ENTER, and that key combination sets
bit 2.

See below for an alternative method of key-detection.

Key put (221,0)

This inserts a character or a token into the keyboard buffer from within
a program so that the next fetch operation will recover it. (There is
room in the buffer for ten, but if overflow occurs any more will be
lost.) Hence you can change the keyboard setting by putting in, say,
‘sHIFT’ plus some harmless key number, and then recovering it by key-
detect. (sHIFT Lock cannot be induced like this.) The feeds are identical
to the returns from the previous program.

KEY DETECTION FROM MEMORY

An alternative method of assessing which key, if any, is being pressed
is provided by the fact that key-presses are recorded in the bits of the
sixteen addresses above and including (240,191) in block 3. To use
this data it is only necessary to switch-in block 3 and test the appro-
priate bit. When I first came across this method, I used the following
piece of code to discover which bit of which address relates to which
key.

The routine starts at the lowest address and tests each bit of each
address until it finds a set bit. If it doesn't find one (no key pressed)

Chapter 2 1 7

it starts again. When it finds a set bit it exits to store the address
containing it and also stores the value left in B minus one, which is
the bit number.

lda, 1 62 1 Await
call BDOS 205 5 0 a key-press
Loop:
di 243
Id a, Block 62 131 Get block 3
out (242), a 211 242 into Range 2
Id hl Lowest 33 240 191 Point to lowest address
lda, 16 62 16 16 addresses
Loop2:
ldb, 8 6 8 8 bits per address
rlc (hl) 203 6 Test the bit
jr ¢ Report 56 13 Jump out if set
djnz Rotate 16 250 Else try next bit
inc hl 35 Next address
dec a 61 Reduce count of addresses
jr nz Loop2 24 244 And test this address if nz
la a, Block 62 134 If zero, restore
out (242),a 211 242 the block
ei 251 and the interrupts
jr Loop 24 227 and start again
Report:
ld a, Block 62 134 Restore
out (242), a 211 242 block 6
ei 251 and restore interrupts
Id (Addr), hl 34 A A Store the address
lda,b 120 Bit No + 1
dec a 61 Bit No
Id (Addr2), a 50 A2 A2 Store bit No
ret 201 Finish

Tables of which bit relates to which key are given in Appendix 5,
though you can calculate them for yourself. If the the key number is
‘n’, then:

Key numbers Offset Bit number
0 to 71 INT n/8 n Mod 8
72 9 7

73 to 80 10 n-73

18 PCW Super Code

The offset is counted from the first table address, which is (240,191).

This method of key-detection is superior to other methods in some
respects. Because the combination of set bits when several keys are
pressed is additive, it enables you to detect any combination of keys,
and because the bits are reset as a key is released, key-release as well
as key-press can be detected.

OTHER KEY FUNCTIONS

The remaining key routines accessible through the jump table are
likely to be employed only once during the initialisation of the pro-
gram. This could be attended by using the Amstrad utilities in a
‘profile.sub’ file, but I personally find the programming approach
more convenient, and it it is certainly more flexible. You will need to
access the last two through the USERF function because they use
ASCII codes etc. (which need access to block 2).

Repeat speed (224,0)

If a key is held down there is normally a delay of 0.6 seconds before a
second character is generated. (This gives clumsy typists time to lift
our fingers.) Once repeating has been established identical characters
are generated every 0.04 seconds, ie. at a rate of 25 per second.
These default settings can be changed by calling (224,0) with the new
values, which are in 1/50ths of a second, in HL.

Hreg Start delay
Lreg Repeat delay

Set key (2150)

This function allows you to assign a particular ASCII code or expan-
sion token (see below) to a given key-press, and you can state which
shift state, if any, you are referring to. The feed data is:

Breg ASCII or expansion token
Creg Key number (manual page 109 [544])
Dreg 1=normal

2 = shift (caps)

Chapter 2 1 9

4 =ALT
8 = shifted ALT
16 = EXTRA

A value of '3' in the D reg, for example, would specify both
'shifted’ and 'normal’. The following code resets the upper case ‘Z’
(shifted “z”) to print “a” instead of “Z” (by way of example only; I'd
be surprised if you come across an urgent need for this particular
conversion).

ldb, 97 6 97 ASCII “a’ into B

lde, 71 14 71 Key num 71 (='z’)

ldd,2 22 2 Specify ’shifted’

call SCR_RN 205 90 252 Call USERF

DEFW 215 @ Address of 'Set Key’
continue....

Any other conversion can be set along the same lines, but if you spec-
ify a key number greater than 79, which is the highest available, then
no action will be taken.

Set Expand (212,0)

This sets the string to which an expansion token (see below) is to be
expanded. If the string won't fit into the table because the latter is full,
the change is not made. Your only course then is to take over or
shorten the entries of other tokens, but I have never tried that. On
completion Cy is set if the expansion was accepted, so test it to see.

The feed data is:

B reg The expansion token (128 to 159)
Creg The string length 0 to 31)
HL pair Address of the expansion string

USING EXPANSION TOKENS

Expansion tokens are the ‘ASCII codes’ in the range 128 to 159. They
are not really ASClIIs, just the reference numbers to the entries in the
table that stores the expansion strings, and obviously not all of them
are used. The number of the first entry is 128, that of the second is

20 PCW Super Code

129, etc. If you (or the makers) allocate a particular string to token
number 128 (say) then the first entry in the table will be that string.
If you have also used the routine at (215,0) to set a key to token 128,
then when the key is pressed the string will be printed. So instead of
getting a mere “z” out of key number 71, you can if you wish get

“HI FOLKS, HOW ARE YOU TODAY ?”
though I won't insist on it.

There are quite a few cases in which expansion tokens are very useful.
Apart from putting cheery messages onto the screen with a minimum
of effort, when used in conjunction with a high-level language such as
BASIC, or with CP/M, the host system will try to execute it. So if you
set the function keys to “coto 100”, “coro 200”, “FRED”, or whatever,
you will be able to choose a single keystroke to access the required bit
of program or run the file called “fred.com”, and this facility can be
integrated into a menu.

For example, the menu choices might look like:

“ Press the Initial letter of your selection :
Bert
Fred
Harry
Sheila

If the normal and the shifted versions of the keys “b”, “f”, “h”, and
“s” have been set to tokens that expand to the full name of each of
these individuals, then their names (and any other details about them
that you include) will appear at the current print position when their
key is pressed.

The token table

When allocating tokens to strings bear in mind that most of them are
allocated already, so in re-allocating them you will be over-writing the
original entries. When a token entry has been over-written and allo-
cated to a new key, the old key may still be allocated to it, so two keys
will produce the new response.

The token table is 150 bytes long and starts at (118,40) in block 0 in

Chapter 2 2 1

my machine. In case yours may be different, to locate it look for the
byte sequence:

1 3126 1 26, .+

There are 32 entries in it, and they may vary in length from 1 byte to
32 bytes. The first byte of an entry defines the length of the text of the
entry, and that may vary from 0 to 31. The text consists of ASCII
codes. Hence the first entry, whichis “1 3", specifies that this entry
is 1 byte long, and that the text byteis ‘3’. The ‘empty’ tokens
such as ‘159’ (see below) have no text, and therefore have entries
consisting of a zero.

The table contents

When you get your machine, tokens 128 to 154 are allocated to the
‘control keys’ “Ctrl C”, “Ctrl Z”, etc. (see manual page 112 [538]).
Tokens 155 to 159 are unallocated at cold-boot. In fact the ‘empty
string’ of token 159 is used as the “don’t do anything” entry; keys
allocated to token 159 have no effect when pressed, and allocating
them so is a good way of uncluttering the keyboard so that the opera-
tor is not constantly making keying errors.

Expansion tokens can’t be nested, ie. you can’t put one within an ex-
pansion string and expect to see it expanded; you'll get the screen
graphic corresponding to the ASCII number concerned. And you
can’t re-allocate such keys as ‘suiFr’, ‘ar’ etc. If the key is numbered
in the keyboard diagram (see the Manual page 109 [544]) then it can
be re-allocated, if it isn’t numbered then it can’t be.

The size considerations on the previous page indicate that only 118
bytes of the table's 150 are available for text (32 bytes are used to
specify the lengths of the entries), and entries that would make the
table exceed its permitted length, or which are themselves longer than
31 bytes, are not accepted.

Example Program

The routine will typically be used in conjuction with the previous one,
as the following example illustrates. It sets ‘f8’ to print the 10-letter
string at address (5,5).

22 PCW Super Code

ldb, 128 6 128 1st token

Idc, 10 14 10 Ten letters

ldhlN N 3 8§ S Point to the string

call USERF 205 90 252

DEFW 212 0 Address of 'Expand’

Idb, 128 6 128 Same token

ldc,77 14 77 Point to the f7/f8 key

ldd,2 22 2 Shifted (=f8 only)

call USERF 205 90 252

DEFW 2150 Address of ‘Set’
continue.....

DISC FACILITIES

The earlier routines in the bank 0 jump table relate to disc drive set
up and handling. They are not likely to be of interest, but the follow-
ing bare bones indicate what is available.

Disc drive initialise (128,0)

This resets all the disc parameters to the default values and turns the
motor off. The default times for the drive motor are:

Motor on timeout 1 sec
Motor off timeout 5 secs

Because mechanical systems suffer more wear from stopping and start-
ing than they do from running, the motor is set to run on for five

seconds after the last read or write request to ensure that this isn’t just
a pause for housework. The routine also resets five other parameters

Disc drive set (131,0)

This sets the above parameters to the new values in a 26-byte data
block called the XDPD (Extended Disc Parameter Block).

Read sector (134,0)

Write sector (137,0)

Chapter 2 23

Check sector (140,0)
Format a track(143,0)
Login (146,0)
Select format (149,0)
Get status (152,0)
Read ID (155,0)

Init parameter block (158,0)

ditto Extended block (161,0)

Motor on (164,0)

Motor off (167,0)

All but the last two disc drive routines should not be used without
detailed information on the data required for satisfactory operation,
though I have it vaguely in mind to publish something covering that
one day.

The action of the last two in the list are, incidentally, given by the
very much simpler bits of code:

lda, N 62 N
out (248), a 211 248

If ‘N’ is given the value 9 the motor is switched on. The value 10
switches it off.

24 . PCW Super Code

Chapter 3

Time and again

Time of da

CP/M operates a clock that an m/c programmer can use to display
the time of day, though it is not much good for interval-timings of the
‘stop watch’ variety. In fact the clock is something of a calendar as
well because it also records a count of days, though you would have
to leave the machine permanently switched on to make use of its long
term recordings because the data is zeroised at each coldboot. The
clock works by counting the number of interrupts, which occur
at 1/300ths of a second.

To obtain a readout BDOS fnc No 105 is called with DE pointing to
a 4-byte ‘TOD’ block, which will receive the required information
(“TOD’ might mean ‘time of day’?). Bytes 0 & 1 get the day number,
byte 2 gets the hour number, and byte 3 gets the minutes number.
Additionally the number of seconds is put into the A register. But
bear in mind that all these numbers are in BCD, except for the ‘days’
count which is a 16-bit number. With the TOD block located at the
address 'TODAD!', the data availibility is as in the following diagram.

Chapter 3 25

Bytes 0 & 1: Days Ll [1| [16-bit)|ndmber] [[[[]
Byte 2: Hours | TENS | UNITS |
Byte 3 : Minutes [[TENY T UNITS |
A reg : Seconds [TTTENY T UNITS |

The time data in the TOD block

In fact you don’t need to call fnc 105 to get the data because it is also
stored at five addresses in high memory. The ‘hours’ are put into
(246,251), ‘minutes’ into (247,251), and ‘seconds’ into (248,251).
Addresses (244/5,251) store the count of days, but setting the time to
23hrs 59mins and waiting for the next increment indicates that the
‘days’ are stored as a simple 16-bit number, and not in BCD as the
other data is.

(244,251)/(245,251) : Days [T T T 1 116-bi] [mbmbed 1 | 1 1 |

(246,251) : Hours LIENS | UNITS |
(247,251) : Minutes [TTENS [DNITS |

(248,251) : Seconds | TENS | UNITS |

The time data in memory

Displaying the time

The time data can be displayed on the screen at your chosen location
either continuously (with a constant update for each new second) or,
if you prefer it, briefly at chosen moments so that the user is made
aware how time is passing (as might be appropriate in games, tests,
etc., where elapsed time is significant).

26 PCW Super Code

The first requirement is a ‘time-string’ for printing by fnc 9 into
which the relevant ASCII codes will be inserted. Lets say this is to be
at address ADDR, which in red-biro formulates to (A0,H), with
(ALH), (A2H), etc., being the addresses following in sequence. The
time-string will be composed of the bytes listed below, which assume
that you want only the ‘hours’, ‘minutes’ and ‘seconds’, but not the
‘days’, though the ’‘days’ can be added easily enough.

The first five bytes determine the screen position at which the time-
string is to appear. If they are both given the value '32' then it will be
printed at the top left. If they are given the values '63' and '77' re-
spectively, it will appear at the bottom right. The 13" at byte 0 resets
CP/M's column count to zero to ensure that printing is where it is
intended in spite of CP/M's mutinous tendency.

Address byte purpose

(A0,H) 13 ‘Carriage return’

(A1,H) 27 Escape sequence

(A2,H) 89 ‘print at’.

(A3,H) L Line No (top line=32)

(A4,H) C Colm No (left colm=32)

(A5,H) 32 Space

(A6,H) 32 Space

(A7,H) DEFB ASCIIs of the two

(A8,H) DEFB ‘hours’ digits.

(A9,H) 46 “.” (separator).
(A10,H) DEFB ASClIs of the two
(Al11,H) DEFB ‘minutes’ digits.
(A12,H) 46 “.” (separator).
(A13,H) DEFB ASCIIs of the two
(A14,H) DEFB ‘seconds’ digits.
(A15H) 32 Space
(Al16,H) 32 Space
(A15,H) 36 String-end marker.

The four ‘32" bytes (spaces) ensure that the time digits are visually
distinct from any text that may have encroached into their area. You
can make the figures stand out in reverse video by replacing the first
two 32s by ‘27 112' and the second two by ‘27 113', though in
reverse video my preference would be to have an extra space before
and after the digits as well. The DEFBs are the ASCII codes of the
digits that will be inserted into the string by our time interpreter sub-r.

Chapter 3 27

The two ‘46’ bytes are the ASCII of “.” which will act as visual
separators between the three elements of the time, though you could
use others (32 for ‘space’, 47 for “/”, or 58 for “:”, for example).
The ‘36’ is the standard string-end marker (delimiter), though if you
have been using BDOS fnc 110 you will presumably need a different
value in here.

Calculating the time

To display the time you can either extract the data from your own
TOD block, or from the PCW’s storage in high memory, whichever
you prefer. For no particularly good reason I have chosen to use a
TOD block.

Start
ldde, TODAD 17 N N Update
Idc, 105 14 105 the
call BDOS 205 5 0 TOD block
Seconds (see below)

This gets the time data (not including the 'seconds’) into the block.
The next step is to preserve the seconds value that will have been put
into the A register because A is about to be used for other purposes:

HLDIG

ldb,a 71 Save the ‘seconds’ into B
and 15 230 15 Discard the 4 high bits
add 48 198 48 and convert ASCII
ldil,a 111 Put the ‘units” into L
lda, b 120 Recover original A

* srla 203 63 Then discard the
srla 203 63 4 low
srla 203 63 bits to get

* srla 203 63 ‘tens’
add 48 198 48 Convert to ASCII
Idh,a 103 Put the ‘tens’ into H
ret 201 Return to main

I have actually made this into a sub-routine and have called it
‘HLDIG’. It returns the required two ASCII digits in HL so they are
ready for insertion into the string. As a sub-r it makes the same code
sequence available for obtaining each part of the display without this

28 PCW Super Code

needing to be written out three times. Hence to put the ‘seconds’
figure into the string, continue the main sequence with:

Seconds
call HLDIG 206 N N Convert the value in A

ld (A13), hl 34 Al13 H and put result into string
continue with ‘minutes’ . .. _

The same approach is used to obtain the ‘hours’ and ‘minutes’ except
that they have to be fetched from the TOD block first. When these
too have been dealt with the string is printed, so the final three steps
of the main routine are:

Minutes

ld a, TODAD+3 58 N N BCD into A

call HLDIG 2056 N N Conuvert it to

Id (A10), hl 34 Al10 H ‘minutes’ & put into string
Hours

Ida, TODAD+2 58 N N BCD into A

call HLDIG 2056 N N Convert it to

Id (A7), hl 34 A7 H ‘hours’ & put into string
Print

Id de, AO 17 A0 H Print

lde, 9 14 9 the

call BDOS 205 5 0 string

ret 201 And finish

Notice that because the time display procedure will be called repeat-
edly to provide each update, it too is a sub-routine and therefore ends
with a ‘ret’.

Program technique

Within HLDIG, I have chosen to use ‘srl a’ (see * ... %) because it
makes the point of the sub-routine more obvious. However,

rra 31
rra 31
rra 31
rra 31

and 15 230 15

Chapter 3 29

would have been preferable on grounds of both brevity and speed.
The alternative is quicker and involves less code, and any spurious
bits that it may rotate into the top end are eliminated by the ‘and 15'.
There will be other cases like this in future examples, but I will stick to
my practice of writing obvious code even if it is not clever code.

Time updating vrocedure

The above sequence and its sub-routine will fill the time string with
the current time and display it on the screen.

Because the CP/M clock doesn’t register time intervals shorter than a
second, the display will obviously not change more frequently, but, if
you are making a continuous display of the time and you require a fair
degree of accuracy and a regular ‘tick’ from your clock, then you need
to call the procedure much more often than that because you cannot
guarantee that any call will exactly coincide with the change to the
next second. If you call it ten times a second, then the length of your
‘seconds’ will be a second plus or minus a tenth of a second, etc.

If the time display is to be spasmodic (ie. used as a kind of prompt),
then you will display it whenever it is needed and then pause either
for a specific interval or until the user presses a key, at which point
you will cancel the display by printing a cancel-string such as the
“Blank line” [escape sequence (27 75)] or a set of ‘spaces’.

Setting the time

The CP/M clock is set to zero when the computer is turned on, but
you can reset it to any time you like by inserting the necessary data
into the TOD block and calling BDOS fnc 104. (Fundamentalist
CP/M users think that day zero is 1st Jan 1978, but there’s no reason
why you should.) Alternatively you can insert your information into
the memory addresses referred to earlier because CP/M uses them to
store the data it works from. If you want to insert a value of ‘1" (one
minute, say), then you would put ‘1" into the relevant byte, but for a
value of “10’, you would putin ‘16, because the four left bits count
in 16s. Similarly the value of ‘11 minutes’ would be given by a byte
value of 17 (1x16 + 1). ‘23 hours’ would be given by 35" (2x 16
+ 3), and ‘59° minutes by ‘89" (5x16 + 9).

Using fnc 104 makes it possible to reset to a precise time-signal. To

30 PCW Super Code

get an exact correspondence with Greenwich Mean, or whatever, put
the data into the block and then run:

de, 1 14 1 Await

call BDOS 205 5 0 a key

ldde, TODAD 17 T T

Idc, 104 14 104 Set the

call BDOS 205 5 0 time
continue . . .

You press any key when the time signal corresponds to the time you
have put into the block.

PAUSES

There are several ways of measuring time intervals. The simplest is
based on the fact that m/c operations take a known time for their exe-
cution, so this can be used to introduce fixed ‘pauses’ into a program.
Others methods can be devised with just about as much complexity
(and accuracy) as you like, but let’s start with the simplest.

Because programmers are usually hell-bent on making their code run
as fast as possible, it may seem unlikely that pauses could ever be
desirable, but, whilst the housekeeping and calculation side of pro-
grams should be fast to be convenient, their interactive aspects need
to be paced to the mood of the user. If you are zapping aliens you
probably won’t want regular intermissions for soothing music, but a
banker tending his millions, or a genius planning his career, might
feel better reassured if the display reacted to his forefinger with gentle-
manly dignity, rather than with confusing, perhaps even insulting,
haste. I'm personally not much enamoured of computers that con-
stantly prove that they think far faster than I can.

For these ‘gentlemanly pauses’, the duration need have no precision
about it so a simple loop will be good enough. The following one
pauses for the number of seconds indicated by BC and is fairly accu-
rate (when tested against interrupts the error was about 1in 300, say
0.3%). On entry, B requests the number of whole seconds and C re-
quests the fractions. If you want one second you put ‘1" in B and
zero in C and then call the sub-r. The content of C indicates the
number of 1/256ths of a second, so half a second would be given by
128" in C, a quarter by ‘64" in C, etc.

Chapter 3 31

lda, 232 62 230 The

1d hl (0) 42 0 0 looping

Id hl (0) 42 0 0 procedure.

dec a 61

jrnz-9 32 247

dec bc 11 Decrement the
Ida,b 120 count

orc 177 of 1/256ths
jrnz-16 32 240 Repeat if not zero
ret - 201 Else finish

The first five instructions load HL from an arbitrary address 460
times, which takes about 1/256th of a second. BC is then decre-
mented to count the loops and the sub-r ends when BC contains zero.
Because BC is decremented before being tested, if you start with zero
in BC this will be interpreted as a request for 65536 loops, ie.
for 4 mins 16 secs, which is the longest pause the sub-r can provide.

Pause timing

If you devise your own loop and you want to know just how long
your pause lasts, include it in a loop that repeats it say a thousand
times and measure the time or the count of interrupts for the thou-
sand. If you are seeking real precision you'll need to calculate the time
taken by the looping procedure that you devised for the test (which is
usually very small in comparison) and deduct it.

Inerrupts occur every 1/300 of a second regardless of the duration of
the interrupt. However if you have timed a pause length with a short
interrupt in operation (no ISRs, say), and you subsequently add to
the length of the interrupt by adding an ISR, then your pause timing
will no longer be accurate.

Uses of pauses

Some computer programs need drama; adventure games for example,
and pauses find use in them to increase the sense of tension and uncer-
tainty. If, faster than a midge’s blink, you get the answer to all your
appraisals of (guesses about) the current dangerous situation (like,
should I kill the dragon now or smile at the princess first?), then the
game soon deteriorates into a rather meaningless sequence of

32 PCW Super Code

keypresses. If on the other hand the computer waits briefly before
responding, then an illusion that your response needs thinking about
can be created, and this lifts the human interest. Your choice seems to
count for more.

Other programs simply need to be slowed down to induce a reassur-
ing atmosphere. The desirability for pauses between menu pages is
referred to in Chapter 10, and there are other situations where pauses
induce a more friendly ‘human scale’ feeling. Many people who don't,
and probably don’t want to, think at electronic speed will be reassured
by packages that present information and choices in a leisurely way.

‘Halt” pauses

Although the m/c instruction ‘halt’ is proscribed in The Amstrad
CP/M Plus , 1 have received more than one assurance that it can be
used without calamities occurring. The instruction causes operations
to cease until the next interrupt occurs, so it creates a natural ‘pause’
that would be 1/300th of a second long in loops such as the follow-
ing, which would generate a pause of 1/10th of a second:

Id b, 30 6 30 Count of 30 interrupts
halt 118
djnz -3 16 253 Loop 30 times

INTERVAL MEASUREMENT

The approach used in producing pauses can also be used to produce a
stop-watch timer. Let’s start by devising a program that sounds a beep
and then times how long the user takes before pressing a key. The
time is to be displayed on the screen to plus or minus a thousandth of
a second, and we won't bother with times longer than 9.999 secs
(longer than that could be hardly be called a ‘response”).

Once again we need a time-string, and a start-string also. The latter
simply clears the screen, sets the print position, and then sounds the
beep to begin. It consists of the bytes

13 27 69 27 89 44 72 7 36

Chapter 3 33

The time-string is to hold four digits and a decimal point. It consists
of:

(AO0,H) DEFB Secs

(ALH) 46 Decimal point

(A2,H) DEFB Tenths

(A3,H) DEFB Hundredths

(A4,H) DEFB Thousandths

(A5H) 27 Print
(A6,H) 89 in

(A7,H) 60 lower
(A8,H) 72 screen
(A9,H) 36 String end.

The escape sequence before the end-marker resets the print position to
the bottom of the screen so that the pressed key does not tack on a
letter at the end of the time digits.

As we intend to measure in thousandths of a second we need a ‘clock’
that ‘ticks’ at that speed, and it turns out that the following segment
of code fits the bill quite nicely:

lde, 92 30 92
dec e 29
jrnz -3 32 253

All it does is to load E with the value ‘92" and then decrement this
number until zero is obtained. As a timing element it has the advan-
tages of being short and simple as well as being easy to adjust; if the
clock runs too slow then the loaded value can be reduced to less than
92, and if it runs too fast the value can be increased. I obtained the
‘92" by including the element in a loop that repeated it for a timed 30
seconds and adjusting the value until the loop count came to as near to
30,000 as I could manage. Hence the elapsed time of the element plus
one pass of the loop was as close to 1/1000th of a second as my pa-
tience would allow (within 0.5%). Because the loop counts itself and
ceases to loop when a key is pressed, it has all the characteristics we
need for our counter of thousandths of a second. It is listed below.

The count of loops is to be recorded in HL, so HL is first zeroised.
Each time the timing element is run, the count in HL is incremented
and saved by ‘push hl’. BDOS fnc 11 is then used to test for a key-
press, and the count recovered by ‘pop hl’. If no key-press is detected
then the sub-r continues, but if one is found it terminates with the
count in HL.

PCW Super Code
34 p

TIMER
Idhl, 0 33 0 0 Zeroise the count
lde 92 30 92 The
dec e 29 timing
jrnz-3 32 253 element
inc hl 35 Increment the count
push hl 229 and save it
lde, 11 14 11 Test for a
call BDOS 206 5 0 key-press
pop hl 225 Recover the count
ora 183 If no key
jrz-16 40 240 then repeat
ret 201 Else return to main

We now need to insert the ASCII version of the count into the time-
string, which is arranged by:

FILL
Id de 1000 17 232 3 Insert
call CALCDIG 205 N N the
Id (A0), a 50 A0 H seconds
Id de 100 17 100 0 Insert
call CALCDIG 205 N N 1st decimal
Id (A2), a 50 A2 H place
Id de 10 17 10 0 Insert
call CALCDIG 205 N N 2nd
Id (A3), a 50 A3 H
lda,l 125 Insert
add 48 198 48 3rd
id (A4), a 50 A4 H
ret 201 Ret to main

This uses the sub-r CALCDIG to work out the ‘thousands’ in HL,
which is the number of whole seconds, then the ‘hundreds’, which is
the ‘tenths of a second’, etc. CALCDIG operates by repeatedly sub-
tracting 1000 (or whatever) from what is left in HL and counting the
subtractions. It then adds ‘48" to the count to obtain the ASCII code
of the relevant digit and returns this in A.

CALCDIG
xor a 175 Zeroise the count
inca 60 Increment the count

sbc hl, de 237 82 Subtract the DE value

Chapter 3 35

jrnc-5 48 251 Repeat if no carry

add hl, de . 25 Else restore the last subtraction
dec a 61 and decrement the count

add a, 48 198 48 Convert to ASCII

ret 201 Return to FILL

The complete timer

Having produced the pieces, the whole operation can be accom-
plished by combining them as indicated on the following page. As
written, this leaves some cleaning up to do, which I leave in your
capable hands. For one thing the display is bald; it gives no instruc-
tions and it doesn’t say what the displayed number is. Nor does it ask
you if you want another ’go’

It would also be as well to reject the result if the first digit has an
ASCII code of more than 57 (because the content of HL exceeded
9999, equivalent to 10 secs or more), otherwise the displayed num-
ber will have a strange first digit.

Id de START 17 8 8§ Print

ldc9 14 9 the

call BDOS 2055 0 'start’ string

call TIMER 206 T T Set the timer going
call FILL 205 F F Fill the time-string
ld de TIME 17 A0 H Print

ldc9 14 9 the

call BDOS 205 5 0 ‘time-string’

ret 201 Finish

Very accurate time of day

There is no objection in principle to combining the CP/M clock with a
timer based on the above so that fractions of a second could be dis-
played continuously, but

a) the difficulties of truly synchronising the two systems
would make the union inconveniently difficult

b) the timer operates in ‘run-time’ thus preventing any
other program being operated whilst it was in use.

36 PCW Super Code

The only way round these is to operate the ‘precise clock’ entirely
from interrupt counting, thus making it possible to display tenths and
hundredths of a second by counting in sets of three and sets of thirty
interrupts. It isn’t possible, nor very desirable (unless you run a
spurious TV game show), to display the time continuously at a finer
accuracy than this. Interrupt counting is described in the next chapter.

37

Chapter 4

Forgive the interruption

I'am indebted to Iain Stirzaker for clarifying some of the finer points
of interrupts, particularly those relating to IM 2.

Without exception computers need interrupts. Interrupts introduce a
kind of ‘time-sharing’ in which the machine takes a little bit of time
for its own purposes and gives you the rest. If you subsequently time-
share your fraction with someone else, then that’s your business.

The ‘own purposes’ include all the activities that the machine must
take care of at regular intervals (its internal housekeeping), plus user
services such as checking to see if a key has been pressed recently and
taking the appropriate action if one has been. To a programmer the
details of all this are not of much importance compared with the fact
that as regular as clockwork (if the clockwork is very precise) the ma-
chine leaves whatever user program is being run and goes off by itself
for a microsecond or two. This happens every 1/300th of a second to
an accuracy that you needn’t check up on.

38 PCW Super Code

TYPES OF INTERRUPT

The interrupt signals are in fact generated by the ULA (Uncommitted
Logic Array), and there are two types of them: Maskable and Non-
maskable. As the name implies, the Z80 cannot ignore the non-
maskable interrupts, but the instruction di (disable interrupts) causes
it to pay no heed to the maskable type, though these can later be put
back into force by the instruction ei (enable interrupts).

If you want to know whether the maskable type interrupts are enabled
or disabled, use the sequence:

lda,r 237 95

jp pe, Progl 234 N1 N1

jp po, Prog2 226 N2 N2
continue . . .

As an alternative, the first line could read
ida,i 237 87

In one case the contents of the Refresh Register are loaded into A,
and in the second case the contents of the Interrupt Register are. Both
cause the Interrupt Flag to be copied into the Parity Flag and this is
later interrogated by the ‘jump’ instructions. The code therefore
causes a jump to the address (N1,N1) if the interrupts are enabled, or
a jump to address (N2,N2) if they are not.

Although the PCW also makes use of the non-maskable interrupts,
they are not hugely interesting and we will restrict our attentions to
the maskable type.

MODES OF INTERRUPTION

The Z80 has three maskable interrupt modes. These are numbered
0, 1, and 2, and selection between them is by the instructions im 0,
im1, or im2 respectively. When the PCW is switched on, the Z80
automatically selects Mode 0 but almost immediately it is switched
into Mode 1, and after that Mode 1 is the PCW’s standard mode.
Mode 0 is almost not interesting at all unless you are a hardware

fanatic.

Chapter 4 39

INTERRUPT MODE 1

In Mode 1, when an interrupt is signalled to it by the ULA, the Z80
completes the instruction that it is in the process of executing, pre-
serves the contents of the Program Counter on the stack, and disables
the interrupts. It then makes a jump to address (56,0) where it finds
the instruction to make another jump, this time to address (161,253),
which is the start of the standard interrupt sequence that has been pro-
grammed into the machine. (It would be wise to check this address on
your machine; the range of PCWs has annoying variations in things
like addresses). Such sequences, whether built-in or written by inter-
rupt programmers such as yourself, go under the generic title of
Interrupt Service Routines (ISRs).

In fact most of the standard ISR resides in block 0, so the part of it in
block 7 simply saves some registers, switches-in block 0, and then
makes a jump to the address found at (167,254) [but found at
(119,254) in the case of the ‘9512’]. For my machine this found
address is (64,30); check yours.

Using Mode 1

Happily, you can write an additional ISR of your own and persuade
the PCW to run it just before it goes off to its own housekeeping.
You do this by inserting your ISR in block 0 and changing the
address at (167,254) [(119,254)] so that it points to your ISK, not to
the usual one, but naturally your ISR must conclude with a jump to
the built-in ISR so that is always run as well.

Happily also, there are some unused areas in block 0 into which your
code can be placed so that it is accessible to the interrupt procedure,
and you can put more code into block 7.

No Start End bytes comment
1, * (64,0) (95,0) 32 Zeroised at startup
2. (240,37) (223,38) 239 Uncertain
3. (232,38) (0,48) large Uncertain

Note that address (64,0) (%) is used by the ‘9512’, so Areal for
that machine starts at (65,0). Between areas 2 & 3 are some bytes

40 PCW Super Code

that cause mayhem if you disturb them, and the safety of these two
areas is not guaranteed in all circumstances. ~When programs are
loaded from disc the lower part of Area 3 is used, though its upper
part above say (0,42) is believed to be relatively free from interfer-
ence.

On the subject of safe areas, the CP/M copyright message lies be-

tween (74,246) and (124,246) in block 7, so you can put anything you
like into this very high area knowing that it will not be overwritten.

The 3 Essential Steps

Running a standard PCW-type of ISR (ie. one that is intended for
Mode 1 operation) involves three separate stages:

1. Put the bytes of the ISR into block 0
2. Change the interrupt start address
3. Use the ISR.

Step 1

To insert a program into block 0 you have to ‘switch-in" block 0. As
indicated earlier there are several ways of doing this but for no espe-
cially good reason I will select Bank 0 (which contains block 0)
using the Memory Manager. (Alternatively you could invoke the
Screen Run Routine which also invokes block 0, or employ the Empiri-
cal Method with ‘Bank 26"). My listing looks like:

ldhl, () 42 167 254 Get interrupt start address
d () nl 34 A A and store
lda, 0 62 0 Select Bank 0
call MEM_M 205 38 253
ldde NN 17 64 0 Destination
Idhl NN 33 PP Source
ldbc NN 1BO Number of bytes
ldir 237 176 Transfer them to Block 0
lda,1 62 1 Back to
call MEM_M 205 33 253 the TPA
continue.....

This program and the bytes of the proposed ISR must be in common
memory. The latter must be waiting at (P,P) in the above case, and
the total number of them is ‘B’.

Chapter 4 41

Remember that the ISR must terminate with a jump to the usual inter-
rupt start address, so before you do anything else you must extract it
and save it in common memory; at the address (N,N) say. Then the
return to the normal interrupt address can be achieved by:

Idhnl, () 42 N N
jp (kD) 233

which is the way that your PCW-type ISR should terminate.

Step 2

Changing the stored interrupt start address is simple enough but it is
necessary to disable the interrupts while it is being done. The opera-
tion should look like:

Id hl 64 33 64 0 New start address

di 243 Interrupts off

1d (), hl 34 167 254 Insert it

e 251 Interrupts on
continue....

For clarity I have used the simple expedient here of poking the new
address into (167,254), which is what my system needs. On the
‘9512 you would poke it into (119,254).

If your ISR is needed whilst only a part of your program is running,
ie. if it becomes surplus to requirements at some stage, then you may
as well switch it off to speed the rest of the program up. It is in any
case necessary to switch it off if you intend to replace it by an alterna-
tive. Switching off is the reverse of switching it on:

Id hl I_START 33 64 30

di 243

Id (), hl 34 167 254

el 251
continue....

To install a replacement ISR you would run the above code and then
go back to Step 1 to copy the new bytes into block 0 and follow the
procedure as before.

42 PCW Super Code

Step 3

The method of using the ISR will naturally depend on what it con-
sists of. Usually the ISR simply updates some data and makes it
available for inspection. The following example forms the basis of a
precise clock by counting interrupts.

Precise timing

A basic ISR for counting interrupts might consist of:

push hl 229 Save HL

ldhil, () 42 A A Get existing count

inc hl 35 and increment it

1d() nl 34 A A Save the new value

pop hl 225 Restore HL

jp L_START 195 64 30 Go to the normal Interrupts

HL is pushed at the start and popped at the end so that its content is
preserved. It is essential to save in this way the contents of at least
HL and AF if they will have their values changed by the ISR. Their
original values are required by BIOS when the ISR has completed its
task. It may be necessary to preserve the contents of DE and BC as
well but I have never checked on this, I have always pushed them at
the start and popped them at the end whenever they are to be used in
the ISR

And, to be on the safe side, it is as well to assume that any ‘calls’
made during the ISR will corrupt all the registers, so ‘push’ and
‘pop’ them all if any ‘calls” are made.

In the last line I have used the start address that applies to my ma-
chine. You must check on the value for the machine in question.

All this ISR does is to increment the value stored in the word at
(A,A). You could use this to test the accuracy of your pause loops, or
otherwise to time intervals of short duration by a sub-routine such as
the one at the top of the next page. On completion, HL will contain
the count of the interrupts that occurred during the interval, but be-
cause they happen 300 times a second the count will rise to a maxi-
mum of 65535 in 21845 seconds, ie. in 3 mins 38 secs, so the
interval must be shorter than this if the count is to mean anything.

Chapter 4

ldhlo
ld() hl

1, ()

continue....

43

3300 Zeroise the
34 A A count

..... The timed

..... interval

42 A A The final count

A more comprehensive ISR for interval timing would increment a full
set of addresses in block 7, each of which stored the count of hun-
dredths, tenths, seconds, etc., to whatever range you wish to go.
The following example records up to 9.99 seconds, though you could
extend to counting minutes, hours, and days as well if you felt in-
clined. This 50-odd byte long routine could be put into area 2, though
if you wantel it in common memory it could be pointed to by a three-

byte entry at (64,0) in block 0, ie:

jp ISR

195 Z Z

The timer routine at (Z,Z) could consists of:

ISR
push hl
push af
IdhIN N
inc (hl)
Ida, (hl)
cp3
jrecN
Id (hD), 0

Hundredths
inc hl
inc (hl)
Id a, (hl)
cp 10
jrecN
Id (hl), 0

Tenths
inc hl
inc (hl)
Id a, (hl)
cp 10
jrecN
Id (h), 0

229 Save HL and AF
245 because used later
33 A A The 1st address

52 Increment it

126 and check it

254 3 If 2 or less

56 38 then finish else
54 0 reset to zero

35 And increment

52 the 2nd address
126 As above

254 10 except

56 29 count in tens not threes
54 0

35

52

126 Ditto 3rd addr

254 10

56 20

54 0

continued on the next page . . .

44 PCW Super Code

Seconds
inc hl 35
inc (hl) 52
Ida, (hl) 126 Ditto 4th address
cp 10 254 10
jrcN 56 11
Id (hl), 0 54 0
Tens
inc hl 35
inc (hl) 52
Id a, (hl) 126 Ditto 5th address
cp 10 254 10
jrcN 56 2
Id (D), 0 54 0
pop af 241 Restore AF
hl 225 and HL

jp I_START 195 64 30 Go to normal Interrupts

The procedure is to increment the address (A,A) at every interrupt,
but when the count reaches ‘3" (A,A) isrestored to zero and the next
address is incremented. Hence the second address is incremented
every 1/100th of a second. When the content of this address reaches
‘10" it is reset to zero and the next one is incremented. Thus the third
one is incremented every tenth of a second, etc.

(Whilst on the subject of timing, remember that all ISRs make the
interrupts last longer. This naturally impacts on any program that is
based on interrupt procedures of the usual length. So if you had
previously carefully calibrated a loop-type pause under the original re-
gime, you will now find that it takes longer to run, about 0.5% longer
in fact.

And if you want to be really nit-picking the situation is complicated
further because for two out of three interrupts the delay is very short,
but during those interrupts when the contents of several addresses
have to be changed (when the ‘seconds’ change all five addresses
need attention) the delay is proportionately longer. A judicious re-
hash could produce the same count without the irregularity but I take
it that, with such concern over precision, you will have no trouble in
getting it right. Delegation, this is called.

Chapter 4 45

To make the question of timings clearer:

1. Interrupts occur at 1/300ths of a second regardless
of what you do.

2. If you make the interrupt last longer by adding
complications, there is less time to be allocated to your
normal program, hence it can do less in a given period,
so your loops won't loop as often in a given time.

INTERRUPT MODE 2

This is the most powerful of the three modes and it is therefore discon-
certing to find it proscribed in The Amstrad CP/M Plus, page 140,
though Iain Stirzaker has carefully worked through the means by
which it can be used. Whereas a Mode 1 interrupt always jumps to
(56,0) to start its excursion, in Mode 2 the programmer decides for
himself where this jump shall be to and he informs the Z80 of his re-
quirements by specifying the interrupt vector. This ‘decide for your-
self” approach is obviously more flexible and it permits operations
that are not possible otherwise.

The interrupt vector

To initiate Mode 2 operations, it is necessary to employ the Interrupt
Register, which we will call T. The interrupt vector contains the
address at which the ISR starts, and ‘I’ contains the high byte of the
interrupt vector. Normally the low byte of the interrupt vector is 255
(see below for abnormally). Suppose that we put X into ‘I’ and then
we initiate Mode 2. The interrupt vector has been declared to be
(255,X) so the Z80 looks at the address (255,X) and extracts from it
the start of the ISR. Note that (255,X) is not the start of the ISR. The
start of the ISR is contained within (255,X). [The low byte of the
ISR-start is at (255,X), and the high byte of the ISR-start is at
0,X+1).]

46 PCW Super Code

Abnormally

It is theoretically possible to connect as many as 128 interrupting pe-
ripherals to the PCW data bus. If any such are connected, then any
one of them may supply the low byte of the interrupt vector so the
latter will probably not now be 255. This arrangement means that
you can have a different ISR for each peripheral, though you may not
want so many. If you want to guarantee that the same ISR is run
regardless of circumstances, then fill pageY with X’ bytes, add
one more X’ at the start of the next page, put Y into I, and start
your ISR at (X,X).

Choosing the Interrupt Vector

In the simple case where the low byte is 255, there are obviously only
256 values that can be ascribed to the interrupt vector, and many of
these are not available because the two addresses concerned are occu-
pied by CP/M or by your own TPA routines. The choice is limited
still further by the fact that the vector should be within common
memory (ie. X should be larger than 191). If all such addresses are
occupied, you can still free a pair within your own program by pre-
ceding them by the instruction jr 2. The surrounding program will
then ignore them.

Switching Mode 2

The method of setting the vector and then switching to IM 2 (which
activates it) consists of:

di 243 Disable the interrupts

lda, N 62 N Put the high byte

ldi,a 287 71 into the I register

im 2 237 94 Switch to IM 2

el 251 Restore the interrupts
continue . . .

It is obviously necessary to have put the address of the ISR into the
interrupt vector, and to have written and installed the ISR before
switching to IM 2.

To get back to Mode 1 from Mode 2 use the following piece of code

Chapter 4 47

di 243 Disable the interrupts

im 1 237 86 Back to IM 1

ei 251 Restore the interrupts
continue . . .

This will re-establish the standard PCW mode of operation.

A program example

Appendix 8 gives a program example of how to set up and operate
within Mode 2, and it illustrates the power of Mode 2 by artificially
creating a closed programming loop and then escaping from it at a key
press. Normally you would need to switch the machine off to get out
of a loop like this.

The loop consists of constantly jumping back to a ‘print string” opera-
tion (BDOS fnc9), the printed string being

“You are now in an endless loop.
To escape hold down the ALT key until you regain control. ”

At every interrupt the ISR checks whether the aLT key is being
pressed. If it isn't then no action is taken and the looping continues. If
it is then the ISR puts a safe ‘restart’ address on the top of the stack
to replace the normal one so that operations continue from the safe
address when the interrupt is complete. The safe restart leads to the
printing of the boast:

“We have regained control - thanks to IM 2 ”

just to confirm who your deliverer is.

IM 2 and BDOS

Because BDOS fiddles about with the interrupts itself, it is important
not to test for the keypress and escape on account of it if the machine
happened to be involved in a BDOS call at the moment that this par-
ticular interrupt occurred. The example program therefore sets up a
BDOS-trap by creating a flag at address (158,2). It sets the flag if
BDOS is in use and resets it otherwise, and no key tests are made if

48 PCW Super Code

the flag is set. There are other occasions when one ought not to make
escape attempts on account of interrupt interference, for example us-
ing IM 2 with USERF functions would require an additional trap.

Exiting from an ISR

All returns from ISRs should be made by means of:

The ISR code

rst 56 255 Do the normal housekeeping
ei 251 Restore the interrupts
reti 237 77 Exit from the ISR

The first of these instructions makes a jump to (566,0) just as a stan-
dard PCW interrupt does, and this ensures that the usual housekeep-
ing duties will be attended to. The last instruction is the form of ‘ret’
that is used to terminate an ISR, though it is only minutely different
from a normal ‘ret’.

Halt, again

The example program uses the instruction ‘halt’ in the BDOS-trap.
This halts all operations until the next interrupt occurs, which pro-
vides time for the keypress to be noticed in case the loop should in-
volve a lot of BDOS use with very little inter-linking code. If you
leave it out you may have to wait a long time for your finger to have
the desired effect.

IM1 VERSUS IM 2

Being more or less free to pick your own location for your ISR, and
being able to decide for yourself where to return to in adverse circum-
stances makes IM 2 distinctly ‘more powerful’ than IM 1, and pro-
grammers, like everyone else, are generally keen to have all the
power they can get, though this very freedom can cause dilemmas.

When you pick your code location you have to be sure that nobody is
going to overwrite it. That will be no problem when you are the only
programmer, so IM 2 is then to be preferred. However, if the user

Chapter 4 49

may chose to load an RSX in tandem with your programming, then
that will try to hide itself at the top of the TPA, just where you chose
to try to hide your code. Block 0, in contrast, is safely out of the way
of being overwritten so IM 1 might be preferable.

WHAT .ISRs CAN'T DO

ISRs can’t do long things gracefully, so keep them short. Just to see
what it was like I have made my programs run at less than 1/50th of
the usual speed by inserting a ISR that contained a very long loop.
I'm sure even slower speeds are possible though the machine simply
gives up trying somewhere fairly close to this level. Exactly where I
can’t say.

In the case quoted the screen display appeared and disappeared with
all the whizz of glaciers on level ground and my curiosity faltered
when it was taking a second or so to print each character. But it is
interesting to see in slow motion exactly what does go on when your
programs run. I detected two unecessary repetitions in the display of
my home-grown assembler; these are noticeable only when the cursor
is crawling at snail’s pace. And it was a bit of a surprise to see the
screen still scrolling at the speed of light whilst BDOS printing could
only trudge.

50 PCW Super Code

Chapter 5
Back to Font

This chapter is about the CP/M ‘fonts’ for use with the dot-matrix
printers of the ‘8256” and the ‘8512". If you require a nice new font for
the daisy wheel printer of the ‘9512’ then you will need to buy a new
daisy wheel from the range available.

If you require a nice new font for the dot-matrix machines then my
best advice is to buy one of the many excellent packages (and some
not so excellent) that have been made available by professional soft-
ware houses. The trade press advertises them extensively.

If I still haven’t put you off then you may be feeling that what follows
is exactly the sort of data you would willingly several times have
given your eye-teeth for. If so then your eye-teeth may still be in
danger because the nitty-gritty of font design is a bit complicated.
However, that said, it is entirely possible to compose and install a
completely new set of characters to your own requirements and print
with them satisfactorily. In this regard, unless your modifications are
to be slight, it might be easier to start from scratch with your own new

Chapter 5 ol

set than to try to modify the characters already in place. Either way
the facts are are as follows.

Printer operation

PCW Machine Code gives a more or less complete description of how
the dot-matrix printers work and how to use them. I won’t go over the
same ground again, but the basic facts are that printed characters
(and in this chapter if I write “printed” I will mean “paper-printed”,
ie. ‘listed’ if you prefer the buzz) are made up of vertical ‘bars’ of
dots, which I will call ‘bars’. Each bar is described by an 8-bit byte.
A byte of value ‘1’ means that the bar will have only its top dot ‘set’,
and a byte value of ‘128" means that only the bottom one will be.
(This is ‘upside down’ compared with the arrangement for printer
graphics.)

The lowest dot of the bar is reserved for underlining so letters usually
use only the upper 7 dots.

There are only 128 printable characters because ASCIIs with the top
bit set (ones larger than 127) signal that the character is to be printed
in italics, so an ASCII of ‘193" (65 + 128) would be a call to print "A"
(italic capital ‘A’). ASCIIs lower than 32 can be printed only if you
make a special request for them, but the ones provided are almost
useless so don't bother (see pages 134 and 135 of the manual), though
these, the ones of ASCII less than 32, are obvious candidates for you
to experiment on; perhaps you might even manage to bring them into
the world that most of us inhabit.

Font data

If that were all that there is to be said about fonts then paper printing
would be as easy as screen printing and we could all rest easily in our
beds, but computer printers are expected to output an extraordinarily
wide range of text types, and it would be prohibitively expensive of
memory to have separate Character Matrix-Rams for every type, par-
ticularly as there are 128 symbols and they require roughly six bytes
each. To get round this difficulty, font data is compressed into a few
relatively short tables, and of these we will first consider the draft
quality.

52 PCW Super Code

DRAFT QUALITY

There are three data tables relating to the draft quality characters.
These are in use whenever a version of draft printing is taking place,
so any modifications you make to them will affect all draft characters
whether, bold, wide, condensed, normal, or whatever.

The tables reside in block 8 starting (in my machine) at (92,103).
They probably start there in yours too, but I suggest that you check to
make sure that the sequence of bytes at that address is

87,1,93, 1,702, 1, 108, 1...

in your case as well. If it isn’t then you should do a search until you
find such a set and base everything that follows on your modified ad-
dress.

The three tables are, in sequence

(92,103) 1. Offset table
(94,104) 2. Label translation table
(179,104) 3. Bar specification table

Offset table

The first table is 258 bytes long and contains pairs of bytes. Each pair
is an offset that is used to locate the font data for a particular ASCII
code. The offset for ASCII code No 0 is the first entry, that for
ASCII code No 1 is the second entry, etc. As the table starts with the
byte sequence given above, the offset for ASCII No 0 is (87,1). The
offset for ASCII No 1 is (93,1), etc. v

Number of bytes ver character

The number of bytes required to describe a character varies from none
in the case of “space”, to 9 in the case of “'e' with a grave accent”.
There may be some that use more than nine, butIhaven’t noticed any
yet. The number of bytes that relate to a character is indicated by the
difference between its own offset and that of the one following.

Chapter 5 53

The first four values in the offset table are:

87,1) Offset for Char 0

93,1) ditto Char 1

(102,1) ditto Char 2

and (108,1) ditto Char 3

Subtracting the first from the second gives a result of ‘6, indicating
that the first character requires six bytes. Subtracting the second from
the third gives a value of ‘9" so the second one requires nine bytes.
Similar treatment shows that the third also needs six bytes, etc.

Although there are only 128 printable characters, there appear to be
129 entries in the offset table, but the last one does not refer to a
character. It is provided only so that the size of the last character can
be deduced.

Bar specification table

If you add the offset extracted from Table 1 to the start address of the
first table, ie. to (92,103), you will obtain the address within Table 3
at which you will find the data that describes the character concerned.
Thus, if weadd (87,1) to (92,103) we get (179,104), and (179,104) is
the address at which the data for ASCII No O starts. This symbol
(which is “a” with a grave accent; see page 135 of the manual) is de-
scribed by the 6 bytes at that address and the next five. (Six bytes are
required in this case but not in all cases.) To get the bytes for ASCII
No 1, you would add (93,1) to (92,103) and use the bytes from that
address and those following, etc.

Label translation table

Unfortunately the bytes obtained as above are not the bytes that de-
scribe the set/reset condition of the dots within a bar, though they do
say which bar design is being referred to. I will therefore call them
‘bar labels’. The dot patterns can be obtained only by reference to the
second table, in which the entries are the bytes that are associated
with each bar label. This second table starts at (94,104). Thus, if you
obtained bar labels of 0, 1, 2, 3, 4, and 5 from the third table (as
described above), then you would look up the first six bytes in the
translation table, which are in fact

54 PCW Super Code

0, 64,1, 4, 65, 32
The dot patterns in this (hyperthetical) case would therefore be:

no dots

bottom dot

top dot

third dot,

top and bottom dots,
sixth dot.

In the case of draft quality this complication saves no memory space
because you could eliminate one whole table by not doing the transla-
tion. However, the saving is significant in the case of NLQ letters,
and it makes sense to use the same methodology for both.

The characters supplied with the machine do not use every possible
dot combination, they use only 85 such combinations so the translation
table contains only 85 entries. The contents of the offset table and of
the label translation table are listed in Appendix 2.

Offset-table modifications

The high byte of each entry in the offset table would normally be much
less than 15, so the top four bits of it would be unused. To shoe-horn
yet more data into the available space the high byte sometimes has its
top bit set (128 is added to the byte), and sometimes bit Nos 4, 5,
and 6 are also set.

OoEOoO0O0000o0
e
OONOOOONMO0N ey toerhed o
%%=%9%%=55% ters, descenders, and
Aorlini

min[n] (amin] (n]nn—
EEEEEBEENEEE
OODOO0O0ORCo0O

If the top bit is set this indicates that the character has a ‘descender’,

" _1 "_ 1 “_n
7

ie. it has a donward pointing leg like “g”, “p q”, etc., that pro-

Chapter 5 95

trudes below the print line. Normally characters use only the upper 7
pins of the printer head, and they can therefore be specified by using
only bit Nos 0 to 6. Bit No 7 is used in underlining, and also in a
few characters. The ninth and lowest pin in the print head is reserved
for ‘descenders’ like those in the letters indicated (see the letter ‘p’ in
the diagram opposite), and is made use of by signalling that the whole
of the character should be printed one pin lower than usual. This
signal is provided by bit 7 of the high byte of the offset. Because the
character is printed lower than usual, descenders are able to protrude
below the underline and all the bars of such characters can still be
specified in 8 bits, though naturally they can't use the top pin as well.

To obtain the significance of the other high bits, mask them out and
treat them as a binary number in their own right. Hence bit No 4 on
its own is equivalent to ‘1", bit Nos4 and 5 together are equivalent to
‘3, bit No 6 is equivalent to ‘4", etc. This derived value is the
number of blank bars that are needed before the character proper
starts.

An example of the latter is given by full-stop “.”, which consists of all
blank bars except for the one with the dot in. Its offset is (100,66).
With the relevant masking, the high byte yields a corrected value of 2,
and the value from bits Nos 4,5, and 6 is ‘4’ (because bit No 6 is
set). Thus 4 blank bars are required before the dot is printed. The
technique is obviously effective because this character is described and
properly positioned in the print line by only one byte of the data table.

Similarly, the ‘comma’ has an offset of (96,178), which indicates that
the character has a descender and that 3 blank bars are required
before the body is printed.

When using a pair of offsets to deduce the number of bytes in a charac-

ter, it is obviously necessary to strip out these modifications from the
high byte before doing the subtraction.

Bar specification table mods

Some further data-packing techniques are used to increase the infor-
mation content of the entries in the third table.

If the top bit of an entry is set, this indicates that a blank bar is re-
quired before this bar.

56 PCW Super Code

If, ignoring the top bit, the entry has a value of 122 to 126 then this
is a signal that the next bar should be repeated. The number of repeti-
tions is given by subtracting 121 from the repetition byte, so the
maximum number of repetitions is 5, which would be signalled by a
value of 126 (or 254). There is not much point in using 122 because
this would signal one repetition which could as easily be achieved by
two identical labels. Repetition bytes may also indicate that a leading
blank bar is required before each repetition, but this is the only other
function that they can perform.

Locating character information

In order to gain easy access to the data that describes characters, it is
necessary to develop some simple routines that will output the infor-
mation we require. Because the data is all held in block 8, we must
have our routines in common memory so they don’t get zapped when
it is being accesssed.

The first requirement is to obtain the necessary offset and the number
of bar labels involved. This is provided by the following routine. Be-
fore using it, the relevant ASCII code must have been inserted into
the address (A,A) in common memory. The next four addresses
above this are also required for reporting back.

FIND
lda?2 62 2 Switch in block
call MEM_M 205 33 253 No 8
Id hl (A,A) 42 A A Recover the
ldh,0 38 0 ASCII code into HL
add hl, hl 41 Double it
ld de TABLE 17 92 103 and add it
add hl, de 25 to Table start
Id e (hl) 94 Low Byte of offset into E
inc hl 35
lda (hl) 126 Hi Byte into A
and 15 230 15 Reject the 4 top bits
ldd,a 87 and put into D
ld (A1,A) de 237 83 A+1 A Store for report
push de 213 and save
Ida (hl) 126 Hi Byte again into A
and 240 230 240 Extract the top 4
ld (A2,A) 50 A+3 A bits and store for report

Chapter 5 57

inc hl 35 Point to next offset
ld e (hl) 94 Low Byte into E
inc hl 35 Hi Byte

ld a (hl) 126 into A

and 15 230 15 Reject top 4 bits
ldd,a 87 and put into D
pop hl 225 Recover 1st offset
ex hl de 235 Swop the two
ora - 183 and subtract 1st
sbc hl, de 237 82 from 2nd

lda,l 125 Result into A

ld (A4,A) a 50 A+4 A and report it
lda, 1 62 1 Switch back to
call MEM_M 205 33 253 the TPA

ret 201 and finish

There are two bytes per entry in the offset table so the ASCII code is
extracted from (A,A) and doubled to give the number of bytes we
have to jump over from the start of the table. This is added to the table
start address so that HL now points to the offset for our character.

The offset is extracted into DE having filtered out the mods to the
high byte, and the offset is stored at (A+1,A). The high byte is then
taken into A again and its top four bits (the mods) are stored for
future reference in (A+3,A).

We then step on to extract the next offset into DE, and recover the first
one by ‘pop’. Subtracting the first one from the second one gives the
number of bytes (bar labels) relating to our character, so this is stored
at (A+4,A). The information now in memory therefore consists of:

(AA) The ASCII code
(A+1,A) LB of offset
(A+2,A) HB ditto
(A+3,A) Mods to HB
(A+4,A) Count of bytes in character

Accessing character information

Having located the labels relating to a character, it is a simple matter
to extract them for inspection. The following routine is intended for

58 PCW Super Code

use after the one above and it employs the data reported by it. It
transfers the bar labels into addresses (A+5,A) and above, where
they can be inspected.

SHOW
lda,?2 62 2 Establish
call MEM_M 205 33 253 block 8
Id hl (A1,A) 42 A+1 A Get the offset
Id de TABLE 17 92 103 and add the table
add hl, de 25 start address.
ldde A5 A 17 A+5 A Point to storage

* ¥

Id bc (A4,A) 23775 A+4 A Get the count of
Idb, 0 6 0 bytes into BC
Idir 237 176 Transfer
lda,l1 62 1 Back to
call MEM_M 205 33 253 the TPA
ret 201 Finish

The bytes supplied by this routine are the ones prior to interpretation,
ie. they are the bar labels. You have to strip off any modifications and
then use the interpretation table to get the pattern of on/off dots that
make up the character. The content of the Interpretation Table is
given in Appendix 2. For a complete interpretation you also need to
combine these mods with the ones implied in the offset, if any, which
are stored at (A+3,A).

Changing character bar-labels

If you want to modify existing characters and see what effect your
modifications have (which is how I analysed the font data), re-write
the routine above but insert

ex hl, de 235 Swop source & destination

at the place marked by the asterisks (%). Run FIND and SHOW to
extract a list of the bar labels in the character. Then change one or
more of these in the way you think is relevant, and then run the modi-
fied program (the one with ‘swop’ in it). This will insert the modi-
fied labels back into table. If the character is then subsequently
printed, the effects of the modifications will be visible.

Chapter 5 29

EXAMPLES OF DRAFT QUALITY CHARACTERS

The four symbols “=" (61), “>" (62), “,” (44), and “E” (69) illus-
trate most of the techniques that are used to pack symbol information
into minimum space. The examples are clarified by the diagrams that
accompany them.

‘Equals’

This has the 62nd entry in the offset table, and its offset is (179,2),
which has an unmodified high byte. The next offset is (181,2) so the
character has only two bytes describing it. Adding (179,2) to (92,103)
gives (15,106), at which are to be found the two labels ‘125" and ‘10".
The first of these is in the range 122 to 126, so it indicates that the
10" must be repeated (125-121) additional times, ie. 4 additional
times.

0000d
00000
EEENE
EEQEE The ‘Equals’ sign
00000
00000
00000
00000

A bar label of ‘10" gives a byte value of 20, and 20 is made up by
setting only bit Nos 2 and 4. Hence the ‘equals sign’ consists of two
parallel lines of dots and because there are five repetitions there are
five dots in each line.

‘Larger than’

This has the 63rd entry in the offset table, and its offset is (181,18),
which has bit No 4 of the high byte set. This says that the character
starts with one blank bar (bit No 4 means ‘1’). The next offset is
(185,18) so there are four bytes in the character. These four bar labels
turn out to be

4, 134, 138, and 135

60 PCW Super Code

The last three have bit No 7 set so a blank bar is required in front of
each. The stripped labels and their interpretations are then

stripped labels: 4 6 10 7
bytes: 65 34 20 8
] I
goUmougn]
HE NN (N
m{m{nm/m(E(E] | Laroer thant
HEEEE (. =gl
ooOoRio0d
Umoogago
LoDogdon
poUooooo

If you map these out onto a piece of graph paper (as above) you will
find that they do indeed look like a right-pointing arrow head. And if
you change all the bar labels to the stripped versions you will find that
the new symbol is compressed into a shorter width due to the removal
of the blank bars.

‘Comma’

The offset for ‘comma’ is (96,178), so the top bit and bit Nos4 and 5
of the high byte are all set. The setting of the top bit signals that this
character is to be printed one pin lower than usual, and that makes
the tail of the comma stick down below the print line. Bits4 and 5
combine to a signal value of ‘3’, so three blank bars are required
before the body of the comma starts.

O
O
O
O]
]

‘Comma’

0 O O O [O
I O [O [O
I | O IR [
BLOO0O000
EEO0O000

Chapter 5 61

Subtracting the stripped offset from the next stripped offset shows that
the character contains only 2 bar labels, and these are found to be ‘17
and ‘30’, which on translation turn out to represent bytes of 128 and
96. ‘128 is the bottom pin (normally pin 8, but in this case pin 9),
and ‘96’ is the next two pins above (64 + 32). The shape of the comma
is obtained from these three dots.

The offset for “E” is (220,2) so there are no mods to the high byte. Its
four bar labels and their translations are

labels: 8 251 13 132
stripped labels: 8 123 13 4
bytes: 127 r 73 65

The first label translates to a byte of ‘127’, which signals seven ‘on’
dots to create the vertical part of the letter.

The second label is ‘123" with its top bit set. This requests 2 addi-
tional repeats of the next byte, its top bit requesting blank bars be-
tween them.

The third label translates to a byte of ‘73’, which maps to the top, the
middle, and the bottom dots of the usual seven in the height of a
letter. The original and the two repeats of this byte form the main part
of the prongs of the ‘E’.

The last label translates to a byte of ‘65, which consists of the top and
bottom dots only (64 + 1), thus extending the top and bottom prongs
by one dot. The top bit of this label is set indicating that a blank bar is
required in front of this byte also.

EOEOEOEOE
EOOO00000
EOO000000
HOEOEOEDD e
EODO00000 Capital “E”
NOO000000
EONEOE(E
NO0000000
0oo000000

62 PCW Super Code

DESIGNING NEW SCRIPTS

Because everything has been done to squeeze the current font into the
minimum space, you will meet problems if you try to obtain graceful
modifications of it. There simply isn’t the room for a lot of changes
unless you are willing to move a great deal of data and ensure that
every consequence of all the moves has been catered for. It is perhaps
better to scrap most of what exists and concentrate your attention on
producing good re-designs for the fewest number of characters that
will cover your requirements.

Whilst it is obviously part of the game to change the data, there is
nothing to be gained from changing the ASCII codes that relate to the
common characters, so ‘65" should continue to mean “A”, and ‘97
to mean “a”, etc. This is in any case essential if you want to use
proportional spacing occasionally. The widths of proportionally
spaced characters are derived by the printer from a look-up table, and

this is listed in the conventional ASCII sequence. (See page 68.)

The re-designed offset table

When the printer goes in search of the pattern of dots for ASCII code
that it is to print next, it must find the offset for that character at the
expected place in the offset table, so the structure of the table can’t be
changed. The offset for “A” must always be the 66th entry, etc.
However, although the offset for “A” must always be in this place,
its value can be anything within reason that we choose.

Lets suppose we are aiming to produce a set of 96 new characters in
the range of ASCII codes 32 to 127. If we could guarantee that no
other ASCII would ever be sent to the printer (and that is not easy to
guarantee), then we could disregard their offsets, we could even ze-
roise them all. However, if in these circumstances a rogue ASCII did
somehow get into the system, it would be better to have a predictable
response to it than an unpredictable one, and I am suggesting that all
‘rogues’ should print a recognised ‘error symbol’, such as a black
blob, say. This would be provided by the following two specfiers:

bar labels: 125 15
bytes: r 28

The first requests 4 repetitions without any blank bars, and the sec-
ond defines three dots one above the other.

Chapter 5 63

(On the subject of barring rogue ASClIIs, it would help if you re-
specified the keyboard so that it would output only the acceptable
ones. This is described on page 108 [541] et seq of the manual and
also in Chapter 2.)

The offset table would therefore need to point to these two bar labels
for all ASCIIs outside our chosen range, but because the blobs are
two labels long the offsets must all differ by 2. The start of the new
offset table would therefore be:

87,1, 89,1, 91,1, 93,1, ... etc
This incrementing by 2 continues up to the entry for ASCII No 31

(the last rogue), so the table will actually start with 32 offsets that
differ by 2.

The re-designed label translation table

The label translation table supplied with the machine contains all the
dot combinations that the authors discovered were necessary to con-
struct their characters. They may also cover your needs too, in which
case you may as well leave them as they are. However, they include
only 85 of the 256 possible combinations of dots, so you may find
that you can do a swop for some of the ones you don’t want, and per-
haps add a few more at the end.

The end of the label translation table is defined only by the start of the
bar specification table that follows it, and this is defined by the size of
the first offset. Because they didn’t want any more varieties of bytes,
the authors set the first offset to (87,1), ie. to the address just beyond
the 85th label translation. If you want more translations (you can
have as many as you like up to 120; remember the repetition bytes),
accommodate them by sizing your first offset accordingly.

The re-designed bar specification table

The bar specification table starts wherever the label translation table
ends, and extends up to a maximum address of (255,107). The cur-
rent version uses up to only (104,107) (the rest of it is packed with
255s), so there is quite a bit of room in the system for exuberant, not
to say flamboyant, calligraphy, provided you start from scratch.

64 PCW Super Code

In the case cited, the first 32 entries in the specification table would
be repetitions of ‘125 15’, which would be the specifiers for the error
blob.

THE NLQ FONT

The operational philosophy of the NLQ font is quite like the one for
the Draft font, except that the printer makes two passes over the text.
It also prints at the slow head speed (which is half the draft head
speed) and this doubles the packing of the dots in the horizontal di-
rection. For the second pass it moves the paper up by half a dot width
and then prints a different set of dots. The effect is to double the dot
packing in the vertical direction also. The doubling of the packing in
both directions means that the text looks much blacker, much more
even, and has a smoother profile, but because there are two passes at
half speed, and because printing takes place in one direction only to
give optimum alignment on the two passes, the printing rate is about
a sixth of what is achieved in draft mode.

Inspection of the bar specification table shows that many NLQ labels
exceed 128 and are therefore requesting blank bars. This is because
the packing of the dots is already high due to the low head speed (the
dots frequently overlap), so if the blank bars are eliminated the char-
acters become narrower but there is no perceptible increase in density
or definition.

As with the draft font there are three tables in block 8 that contain the
NLQ data, and they operate as the draft ones do. The start addresses
are:

(104,94) 1. Offset Table
(106,95) 2. Label Translation
(94,96) 3. Bar Specification

The contents of the offset table and of the label translation table are
listed in Appendix 3.

Bytes per character

Because twice as many dots may be printed in a character width,
many NLQ characters require more than 20 labels for their complete

Chapter 5 65

specification. The bar specification table is therefore much longer and
extends up to the start of the draft font tables at (92,103). As before
the number of bytes required is indicated by the difference between
adjacent offsets.

Label translation

The NLQ label translation table contains two bytes per character. The
second one specifies the dot pattern for the first pass and vice versa.
There are 121 labels in use, so the table contains 242 bytes.

Whereas the coded translations are in most cases the same as were
described for draft, the NLQ label ‘122’ signals that the two bytes
following it are not labels but binary dot patterns that are to be used as
they stand and so are not to be translated. Hence the sequence
122 1 128

would mean “print the top dot on the 2nd pass and the bottom dot on
the first pass”. ‘122" is used in “comma”, “full-stop”, and “apostro-
phe” (and in others) where it miraculously converts an otherwise un-
intelligible dot pattern in the familiar shapes we so love and admire.

EXAMPLES OF NLQ CHARACTERS

I will illustrate the NLQ characters by describing the same examples
as before, though because of the double pass and the way dots are
packed together, the final shape of characters is not as obvious as it is
for their draft version, and it is obscured further in the case of the
letters by the fact that thisis a ‘serif font in which the horizontals and
verticals all end in spikey bits.

"Equals’

The 62nd offset is (128,5) and the next one is (132,5), so the
character is four labels long. When the offset is added to (104,94) you
get (232,99), at which address are to be found the labels on the next

page:
Labels: 127 11 139 139
Stripped labels: r 41 11 1

66 PCW Super Code

For these the translation table gives the following pairs of bytes:

First pass: - 20 20 20
Second pass: - 0 0 0

The first byte requests 6 repetitions of the following one, and the last
two bytes add two more. All the Bytes are 20’ as was the case for the
draft version. Nothing is printed on the second pass.

‘Larger than’

The 63rd offset is (132,37) and the following one is (139,5) so the
character uses 7 labels. Bit5 of the high byte is set so the character
starts with 2 blank bars. The labels and their translations are:

Labels: 1 142 135 145 139 177 133
Stripped labels: 1 14 7 17 11 49 5
First pass: 65 0 34 0 20 0 8
Second pass: 0 33 0 18 0 12 0

If you draw out these two sets of bytes you will find that they are both
right pointing arrow head shapes. The first one is bigger and pointed,
the second is smaller and blunt. They superimpose to make a densely
packed arrow head.

BOOO00O00 OEO0000
H[E] |EEEN OoOmOoco
NN (BN 0oooomo
OOO00O0OC#E NLQ ‘Larger than’ OoooUmd
HNEE .] OooEO00
OOEO0O00 First and second OBOO0O00
BOOO0O00 passes Ooocogoo
ooooooh Ooogodd
OoOooon ODOO0o0ooo

The dots of the second pass are printed half a dot lower than those of
the first pass.

Chapter 5 67

‘Comma’

This character has an offset of (192,84) and contains 9 labels in three
triplets. Each triplet consists of a ‘122" and its two binary bytes, so
the specification is:

122 160 64 122 0 160 122 96 64

If you plot these out it is possible to persuade yourself that they look
like a comma.

Capital 'E’
The offset is (233,5) and there are 11 labels which translate as:

Labels: 1 129 146 252 13 250 12 93 129 14 7
Stripped Ibls: 1 1 18 124 13 122 12 93 1 14 7

First pass: 65 65 63 r 73 B 93 65 0 34
Second pass: 0 0 127 r 0 B 12 0 13 0

When plotted out these two sets of dots conform pretty much to what
you would expect.

MODIFYING NLQ

If you intend to modify the NLQ font then obviously you have a seri-
ous project on your hands. Apart from anything else there is no gap
between the NLQ tables and the ones used in Draft, so the former
cannot be expanded without affecting the latter. This is why I keep re-
ferring to starting from scratch.

However, it has occurred to me that the space available in and after
the draft tables, particularly if you eliminate the first 32 characters,
might well make it possible to design a draft font to an NNLQ speci-
fication (Nearly Near Letter Quality) by having denser dot packing at
least in the horizontal direction. This might be achieved by cutting out
all the blank bars and repeating most of the others. If you get it right,
you would then have a neat font that printed at draft speed, but I'm
not promising anything.

68 PCW Super Code

MODIFYING LOCOSCRIPT

The font data for the printed Locoscript 1 letters is kept in the file
called Matrix.sTD, and that for Locoscript 2 isin MaTrRiX.PRI. If you
take your version into memory you will be able to modify it in broadly
the way described for the CP/M NLQ font, though there are some
differences. For one thing the ‘binary label’ 122 becomes 123 in
Locoscript. It is an inconvenient fact that there are many versions of
Locoscript 2, and these vary in ways that make a general statement
impossible, though no doubt you can deal with your own version if
you experiment.

PROPORTIONAL SPACING

Proportional spacing is toggled by 27 112 x’, where ‘x’ may have
the values 0 or 1. Itslook-up table occupies the 64 bytes preceding
the NLQ tables so it starts at (40,94) with the byte sequence:

152 119 68 160 139

Each byte of it contains the width data for two characters, each in
four bits, so the individual width values may vary from 0 to 15.

The operation of the table is illustrated by the 17th entry, which is
160. This separates into the values 10 and 0, which relate to space
and “!” respectively. “!” has the narrowest width allocation of
zero, as have “;” and “:”, which combine to make the 30th table
entry zero. The 19th entryis 138, which indicates a width of 8 for
“$” and 10 for “%” (8x16 + 10 = 138).

If you modify the table contents you will be able to observe the effect
on the relevant letters when they are printed in proportional spacing
mode.

69

Chapter 6

Basics of Screen Printing

BDOS functions

The BDOS functions of CP/M are called by putting the function
number into the C register and then making a call to (5,0). In some
cases the DE register-pair needs to be loaded with an address before
the call is made, and in some cases BDOS reports back with informa-
tionin A orin HL or in both.

All printing of text on the screen is achieved by using one of the
following BDOS functions:

Fnc 1 Halts operations to await the next keypress,
which is recorded in A and if printable is echoed
on the screen.

Fnc 2 Prints the single ASCII in E.

Fnc 9 Prints the string pointed to by DE.

Fnc 10 Halts operations to await keyboard input of
a text string, which is printed on the screen and
also stored in the declared buffer.

Fnc 111 Prints the text described by a 4-byte CCB.

70 PCW Super Code

The Print Position

Until it is modified, the screen print position stays ai the end of the
last piece of text that was printed, but new text can conizain as many
position instructions as you like, thus allowing any part of it to be
placed in a desired screen location. If necessary the ‘text’ can consist
of nothing but a print-position instruction. This would shift the print
location ready for a subsequent action such as key-board input for
funcs 1 or 10, for example (which obviously can’t themselves declare
the required location), or to allow printing of a string at different loca-
tions at different times.

The most comprehensive control of print position is given by includ-
ing the escape sequence

27 89 432 G382 s

in the material to be printed. ‘L’ is the line number (for the top line
L=0), and ‘C’ is the column number (for the leftmost column C=0).
This sequence automatically moves the print position to the place
specified by L & C, but be warned that there is a system error (a bug
in CP/M) that interferes with printing on line 4. (See ‘String Print-
ing’). It is necessary occasionally to include the control code ‘Carriage
Return’ (=13) into text items because without it CP/M will get its
sums wrong and print on the next line down even if you haven’t told it
to. On its own CR moves printing to the left margin, but if you
follow it immediately by a print position instruction this effect will be
overridden.

The print position is affected by the inclusion in the text of the control
codes:

BACKSPACE 8
TAB 9
LINE FEED 10 (scroll if on bottom line)
CR 13
SPACE 32

or of an escape sequence consisting of:

CURS UP 27 65 (no scroll)
CURS DOWN 27 6 (ditto)
CURS RIGHT 27 67 (ditto)

CURS LEFT 27 68 (ditto)
CURS HOME 2772 (go to top left)

CURS UP 2773 (scroll down if on top line)

Chapter 6 7 1

Keyboard Input

Functions 1 & 10 take in data from the user, the others print only in-
formation that is already in memory. Function 1 makes it possible for
the user to respond to program enquiries such as menus or other
simple choice situations. If called repeatedly it can be used for accept-
ing more complex inputs (such as multi-digit numbers, or the input
of ID codes), but its usefulness for text input is quickly eroded by the
complication of providing for the correction of errors. However, be-
cause a return from it is made at each key-stroke, illegal keystrokes
(non-numerals say, or invalid code characters) can be detected and
dealt with as they arise.

Function 10 has the opposite characteristics. It can accept up to 128
characters at a single input, the user can employ the ‘DEL’ keys and
the right/left arrows to correct errors on the hoof, and the cursor
keys can be used to move back and forth within the previously input
text. However, because the function has no discrimination, and no
return is made until the input is complete, illegal input will not be
detected until the end of what might be a lengthy keying session,
which can in some circumstances lead to muttering about “bad de-
sign” and “not user friendly”.

To use Fnc 10 it is necessary to declare the location of the buffer that
will receive the input (its address is put into DE before calling
BDOS), and to specify the maximum number of characters it may con-
tain. You put this maximum, which may not exceed 128, into the first
buffer address. CP/M will count the actual number typed in and
enter this value at the second buffer address, and the text will start at
the third buffer address. If the user attempts to input more than the
specified maximum, a beep will sound and no more will be accepted.
The user indicates that his input is complete by pressing ‘RETURN’,
but the “13’ for this is not inserted into the buffer nor added onto the
character count.

Single characters

Fnc 2 finds only occasional use for printing such characters as “?”,
meaning “I don’t understand”, or “!”, meaning “that looks wrong to
me” (though to chess buffs it might actually mean “that looks good to
me”!), but in all cases except when there is a serious shortage of print-
ing space it is preferable to print the full phrase.

72 PCW Super Code

String printing

A ‘string’ is a sequence of ASCII codes. For use with Fnc 9 the string
must be terminated by an end-marker (delimiter), which convention-
ally is “$”, ie. 36. However an error in the system programming
makes it preferable to change the end marker to a value that lies out-
side the range 32 to 64. Unless this change is made (see the next
heading) it is not possible to print directly onto the line whose number
is given by [delimiter minus 32], which is normally line 4.

To print a string its address is put.into DE before calling the function.

The string may contain any of the control codes and escape sequences
listed in the manuals on pages 139 to 141 [581 to 584].

Changing the End-Marker

The new value of the end-marker is notified to CP/M by using Fnc
110. You put the value into DE (which is the same as saying that zero
is put into D and the marker value is put into E) before the function
is called. If instead you put (255,255) into DE, then the function will
report back with the value of the current end-marker in A, without
making any change to it. My preference for the marker value is 255,
soIload DE with (255,0) before calling the function, though zero is
also a good choice. If you change it, don’t forget that you must
change the it back to 36 before returning to CP/M because it uses
36.

I am told that Basic uses its own printing routine, one that owes
nothing to CP/M, and its own terminator is zero, which need not be
reset before a return to Basic.

Block Printing

To use Fnc 111, DE is first given the address of a 4-byte Character
Control Block (CCB), the first two bytes of which contain the address
of the start of the text, and the second two contain the count of the
number of characters to be printed. This allows text with no end-
marker to be printed, and you can of course print different sections
from within a block at different times just by changing the address and
the count.

Chapter 6 73

Text Control

Several of the CP/M escape sequences provide useful control of the
text being printed. They are used by including them in a string. When
it is printed they come into effect from whatever location they occupy.

Deletes

There are several escape sequences for deleting text from the screen,
none of which change the cursor position:

27 69 Clear the whole screen

27 74 Clear to the bottom of the screen from and
including the cursor position

27 75 Clear to the end of this line

27 77 Delete all this line

27 78 Delete the character under the cursor

27 100 Clear from the top of the screen down to and

including the cursor position.

‘Clear screen’ is used every time a new text page, such as a menu, is
to be displayed. If you don't clear the screen then the new text will be
indecipherably superimposed upon the old.

‘Delete character is not one I have ever used, but the others find ap-
plication in deleting messages such as prompts or minor error warn-
ings, and in cases where the users wishes to start his input again from
scratch.

Emphasis

Page headings etc, can be underlined by preceding them with 27 114,
but remember to terminate the heading with 27 117 or all subsequent
text will be underlined as well.

‘Reverse video’ is valuable in menu pages and in drawing attention to
staus reports. It is given by 27 112, but remember to terminate it by
27 113.

Cursor onjoff

There are occasions when the cursor blob interferes with a screen dis-

play. To avoid this it can be disabled by 27 102, and switched back

74 PCW Super Code

onagainby 27 101. As an alternative to turning it off you can some-
times move out of the way, to the bottom of the screen for example.

Cursor position

Particularly when data is being input, it may be necessary to return to
a previous screen location although its Line and Column values are
not be known when the program is being written. Such screen loca-
tions can be recorded by 27 106, and then re-established by 27 107.

Summary

The following piece of code gives an example of the use of most of
these various screen printing techniques. I have assumed that it is OK
for you to insert it at address (0,200) upwards, which is above the
reach of a short BASIC program, should there be one in residence.
When it finishes it makes a ‘ret’. If you are working from BASIC this
will be appropriate, otherwise it may not be, in which case replace the
‘ret’ (201) with ‘rst 56’ (255), which hands over to CP/M, or ‘jp
MENU' if you are working from a menu.

Section 1: (0,200)

ld de 255 17 255 0 Change
Idc 110 14 110 the
call BDOS 205 5 0 end-marker
Id de 255 255 17 255 255 Then
Idc 110 14 110 check
call BDOS 205 5 0 it and
Id(NN),a 50 254 199 store it at (255,199)
Section 2
Id de STR1 17 100 200 Print the
ldc9 14 9 first
call BDOS 205 5 0 string
Section 3
Id de BUFFER 17 180 200 Establish
Id a 20 62 20 a buffer
Id (de), a 18 at (70,200) for
ldc10 14 10 20 characters.
call BDOS 205 5 0
Section 4
Id de STR2 17 140 200 Point to the 2nd
lcc9 14 9 string and
call BDOS 205 5 0 print it

Chapter 6

Section 5

lda, (N N)

Id(NN),a

Id de CCB

Idc111

call BDOS
Section 6

Id de STR3

Icc9

call BDOS
Section 7

Ide’?’

ldc2

call BDOS
Section 8

Id de STR3

lec9

call BDOS
Section 9

Idde'$’

Idc 111

call BDOS
Section 10

ldc1l

call BDOS

ret

75

58 181 200 Get number of letters
50 172 200 & put into the CCB.
17 170 200 Point to CCB

14 111 and print

205 5 0 text again

17 160 200 Point to 3rd

14 9 string and

205 5 0 print it

30 63 Print a

14 2 single

205 5 0 “rv,

17 160 200 Point to 3rd

14 9 string and

205 5 0 print it again

17 36 0 Revert

14 111 to normal

205 5 0 end marker.

14 1 Await a

205 50 keypress

201 Then finish.

The string at address (100,200) is as follows:

27 69

Clear screen

13 27 89 40 48 Position

73 110 112 117 116 32 “Input

115 111 109 101 32 some

116 101 120 116 58 text: ”

13 27 89 40 70 Position

27 114 Underline on
255 End marker

and the one at (140,200) as follows:

27 117

13 10 10 10

99 27112
255

Underline off
CR + 3 lines down
2 tabs infrom left margin, plus inverse on

76 PCW Super Code

and finally the one at (160,200):

27 113 Inverse off
13 10 10 10 9 9 255 As above

The content of the CCB located at (170,200) should be:

182 200 0 0

Explanation of example program

The first section changes the string end-marker to 255’. It then re-
quests what the new marker is and stores the returned figure at
(254,199) where you can inspect it at leisure.

The second section prints the string at (100,200) using BDOS fnc No 9.
This string clears the screen, sets the print position to line 8 column
16, and then provides the words “Input some text:”, followed by a
new position instruction to go to line 8 column 38. It then turns on
the underline mode so that any following text will be underlined.

The third section establishes a ‘Console Buffer at (180,200) and puts
the value “20" into the first byte of it. The user must now input up to
20 characters of text and press ‘ENTER’ (or ‘RETURN'’). Because the
underline mode had been established earlier, the text will appear un-
derlined.

The fourth section prints the string at (140,200) using fnc 9 again.
This string turns off the underline mode, moves to the left margin
(13=CR) and down three lines (10=line feed), followed by right by
two TABS (16 columns). It then turns on the reverse video mode, so
that text appearing next will be in black on a white background.

In the fifth section we require to print the text currently in the console
buffer. However this text is of unknown length and has no end-
marker, so only fnc 111 is appropriate to print it. The start of the text
is known to be at (182,200) so I made a point of inserting this address
into the CCB at (170,200). The function also needs to know the number
of characters to print so this is obtained from (181,200) into A and
then transferred into the CCB at (172,200).

The sixth section prints the string at (160,200), which turns off the

Chapter 6 77

inverse video and makes the same position shift of three lines down
and 16 columns across.

The seventh section now prints a “?”.

The eighth section uses the last string again to move the cursor posi-
tion clear of the printed material.

The ninth section reestablishes the original end-marker (assumed to
be ‘36').

The tenth section pauses until a key is pressed before exiting the pro-
gram.

After the program has been run, you can verify

a) the value of the selected end-marker by inspecting
(254,199).

b) the permitted length (20) of the console buffer, and the
number of characters typed in (second byte of the buffer),
and the text itself. The buffer is at (180,200).

¢) the fact that the CCB now also includes the number of
chars to print [at (172,200)].

Finding the cursor

Bank 0 contains a sub-routine called ‘TE_ASK’ (‘TE’ stands for ‘termi-
nal emulation’) that reports the position of the cursor. Your program
can therefore check to see where a text input has got to and react ac-
cordingly. TE_ASK is at (191,0) and it returns the cursor position in
HL. H gives you the line number and L the column, but with one of
those inconsistencies that could unhinge a sensitive constitution,
these numbers don’t have the usual ‘32" added (CP/M was obvi-
ously written by a team dispersed in several buildings). ‘TE_ASK’
thinks the top line is line No 0, and the left column is column No 0.
This facility is described on page 14

78 PCW Super Code

Chapter 7

Basics of Screen Addressing

The Memory

The Z80 processor, which is the operational heart of the PCWs, can
have access to only 64k of memory at a time even though the ma-
chines are provided with more than this. The lowest memory address
is zero and the highest is 65535 when expressed in normal decimal
(also called denary) notation. In hexadecimal notation the address
range is 0000h to FFFFh, and in my own ‘Red-biro’ notation it is
0,0) to (255,255).

The normal memory map

When the computer is switched on, the map of its 64k of memory is
as indicated in Appendix 6.

CP/M occupies two memory areas within this, the lower of which
starts at 0 and extends up to 255 (which memory range is called
‘page 0). The upper area extends down from (255,255) to (6,246).

The memory between these two areas is called the ‘TPA’, which

Chapter 7 79

stands for ‘Transient Program Area’. All your programs, and features
such as BASIC if it is in use, occupy the TPA.

Additionally, when a program is loaded into the machine, the loading
is handled by a sub-routine that is inserted just below the upper
CP/M area, and which extends down to (128,242), but when loading
is complete this region is again available for other use.

The standard COM file stack extends downwards below (0,246), so

the first pair of bytes onto the stack will occupy (255 & 254,245). See
page 10 for other stack addresses.

Memory Blocks

The whole of the memory in the PCW, whether it be 256k or 512k,
is sub-divided up into blocks of 16k. In the ‘8256’ there are 16
such blocks (numbered from 0 to 15), and in the ‘8512" and ‘9512’
there are 32 (numbered from 0 to 31). Because the Z80 can address
only 64k at once, only 4 of the blocks are ‘in circuit’ (in contact
with the Z80) at any time. The others are ‘out of circuit’, but still
preserve whatever memory content has been put into them so that it is
ready for use when called upon.

Memory Banks

A group of 4 ‘in-circuit’ blocks is called a bank. A bank always con-
sists of 64k, and the banks are also numbered from zero upwards. The
standard bank, ie. the one described above that contains the TPA, is
numbered as ‘Bank 1’

Every bank contains Block 7, regardless of the other blocks in it, so
Block 7 is called ‘common memory’. Block 7 is always addressed in
the range (0,192) to (255,255), and you will see from the diagram in
Appendix 6 that the upper part of CP/M, the loading program, and
the upper part of the TPA are therefore all in Block 7. Block 7 acts as
an area of co-ordinating memory through which the actions of all the
banks can be applied to whatever task is in hand.

As well as occupying two regions in Bank 1, CP/M reserves five
other blocks entirely for its own use. Within these it stores the data
and the sub-routines that it needs for controlling the computer, and

80 PCW Super Code

for providing the various services that it makes available. The content
of the blocks is summarised in Appendix 6.

The Screen Environment

Whilst most of the banks are referred to by their numbers, one has no
number but is given the name ‘The Screen Environment’. This bank is
of particular interest to us because it is the only one through which we
can gain comfortable access to the screen data and the data from which
the screen characters are generated. It also contains the ‘Roller-RAM’
without which screen locations could not be addressed. The blocks in
service in the various banks are listed in Appendix 4.

Notice that the only bank that gives simultaneous access to the whole

of the screen data is the Screen Environment because that is the only
one that features Block 2.

The screen map

Everything on the computer screen is formed from a pattern of pixels,
a pixel being a single dot of light. There are 184,320 pixel positions
arranged in 256 horizontal lines of 720 pixels per line.

Each print position (the screen space occupied by a printable charac-
ter) consists of 8 lines of 8 pixels, the eight lines being one above the
other. The 8 pixels in a pixel-line are represented by the 8 bits of a
byte. Initbit No 0 refers to the rightmost pixel, and bit No 7 to the
leftmost one. Each set bit signals an ‘on’ pixel (a bright dot), and
each reset bit signals an ‘off pixel (no bright dot). Hence a byte
value of 1 would light only the rightmost dot, 128 would light the
left-most one, and 255 would light all of them to give a line of light
one print character wide. Each other value of the byte would imply a
particular combination of lit and unlit pixels. For example, a byte
value 85 (01010101) would imply ‘off pixels alternating with ‘on’
pixels to give a line that appears to be dimly lit.

If all eight of the bytes representing a print position contained. 255, ie.
if all 64 of the pixels were switched on, then the position would be
filled with a rectangle of light. It would be a rectangle not a square
because the vertical separation of the pixel-lines is twice as great as the
horizontal separation of the pixels within a line.

Chapter 7 8 1

The record of which pixels are on and which are off is to be found in
the Screen Data, which starts in Block 1 at (48,89), and extends into
Block 2 up to (47,179). The circuitry that controls the VDU screen
constantly scans this data and sets and resets its pixels according to
what it finds there. Every time it finds a set bit it turns on the corre-
sponding pixel, and every time it finds a reset bit, it makes sure that
the corresponding pixel is switched off.

Hence, any changes made to the memory bytes in this area will imme-
diately change the screen display. For example, if you wanted to light
up the entire screen you would fill the Screen Data area with 255
bytes, and if you wanted to clear the screen you would fill the Screen
Data with zeroes.

However, the PCWs were conceived as text handling machines so the
Screen Data is organised in the way that best suits the printing of
characters. The eight pixel-lines of a character position are repre-
sented by eight bytes in sequence in the screen data area, and those of
the character position to the right are represented the next eight bytes,
etc. (See the diagram in Appendix 7).

Hence if you want to draw a straight line across the screen, you can
not achieve it by filling 90 bytes in sequence; you would have to fill
90 bytes spaced at 8-byte intervals.

The situation is complicated still further by the fact that a given Screen
Data byte does not relate to a particular place on the screen. To aid
the scrolling of text, the byte relates only to a fixed place within the
text. Suppose the byte at our chosen address is found to correspond
with the top of a letter “Z" within the word ‘Zebra’. Wherever the
text is scrolled to, as long as ‘Zebra’ stays in view, our byte will
always point to the ‘Z’, though if the print line containing ‘Zebra’ is
scrolled off the screen, the byte will be re-allocated to the top of a new
letter; one that occupies same column that was occupied by the Z".

Roller-RAM

CP/M uses a 512-byte data table called Roller-RAM to ascertain
which bytes in the Screen Data apply to which physical locations on
the screen. The table starts at (0,182), in Block 2, and can therefore
be accessed at the same time as the Screen Data by using the Screen
Environment.

82 PCW Super Code

What Roller-Ram contains is 256 addresses (hence 512 bytes) which
point to the 256 pixel-lines down the left edge of the screen, though
for reasons unclear it stores them in a slighly mangled way. The dia-
gram in Appendix 7 shows how the addresses in the table map onto
the screen, but let me work through it blow by blow.

1st entry in R-RAM

The first address stored in Roller-RAM (ie. the one indicated by the
first two bytes of the table) is half of the address of the top left pixel-
line of the screen.

Suppose we examine Roller-RAM and find that its first two bytes are
152 and 44. These two numbers are the low and high bytes of half a
red-biro address, so we have to double their value to get the actual
address. Twice (152,44) is (48,89), hence the address Roller-RAM is
telling us about is (48,89).

[In case the result of the doubling is not obvious; doubling (152,0)
gives (304,0) which is actually (48,1), and doubling (04) gives 0,88).
Adding these gives (48,89). In practice you will not need to do the
doubling youself because there are lots of m/c instructions that will do
it for you.]

So what Roller-Ram is telling us is that, in this case, whatever we do
to the content of address (48,89) will show up in the top left corner of
the screen. Hence if we put ‘255" into (48,89) then a line of light will
appear in the top left corner.

The address we obtain from Roller-RAM is certain to be an address
within the Screen Data area; in the above case it happens that it was
the first address of the Screen Data [(48,89)]. Frequently the first ad-
dress stored in Roller-RAM will not be the first address of the Screen
Data, but it will always be the address of the byte at the top left
corner.

Rest of Roller-RAM

The next seven addresses in Roller-RAM are simple increments of the
first address. Hence if you add the second entry to the first entry you
will get the address of the second pixel-line down from the top left

Chapter 7 83

corner. If you add the third to the first you will get the address of the
third pixel line down, etc. (See the large diagram in Appendix 7.)
The 8th entry in Roller-RAM, like the first, is also half a screen ad-
dress, but in this case it is half the address of the top left pixel-line of
the second print line. (Which is numbered as print-line No 1.)

The sequence of further entries continues in this pattern; every 8th
entry being half a pixel-line address.

Summary of Roller-RAM

The first entry in Roller-Ram (its first two bytes) has to be doubled to
discover the address of the top left pixel-line.

To find the address of the first pixel-line in print line 1, double the 9th
entry (which is given by the 17th & 18th bytes).

To find the address of the first pixel-line in print line 2, double the
17th entry (which is given by the 33rd & 34th bytes), etc . ..

In general terms, the address of the first pixel-line of any print line can
be derived from two stages of calculation as follows:

1. Required place in Roller-RAM = (48,89) + 16 x LINE
2. Required screen address = 2 x (the address stored here)

The Status Line

The lowest screen print line is referred to as the ‘Status Line’ because
it may be separated from the body of the screen and made available for
displaying status and error messages, etc. When this separation is in
effect the status line will not scroll with the rest of the screen. The act
of separating it is referred to ‘Enabling’ the status line, and this is
achieved by printing the escape sequence “27 49”. It can be reab-
sorbed back into the body of the screen by ‘Disabling’ it, which is
given by printing “27 48”. (See also page 14 in Chapter 2.)

84 PCW Super Code

THE SCREEN RUN ROUTINE

Whilst the Memory Manager can access the numbered banks (see
pages 9 and 194), the Screen Environment has no number and to
access it the ‘Screen Run Routine’ has to be used instead.

The Screen Run Routine was referred to in Chapter 2,- but because it
finds use in so many screen-display applications I have evolved the
following ‘modular’ approach, which makes the process of writing
such applications a little simpler. It also standardises on the use of
registers and variables addresses so that applications can use each
other’s output. Because it involves bank switching it must be located
in common memory, as must the routines that use it. It is an obvious
candidate for a library and in mine it takes up the first part of block 7,
but you will obviously put anywhere it else in block 7 that is conven-
ient.

The Modular pattern

When using the modular pattern, the first 20 bytes of block 7 are
given over to storage of variables. Not all of them are used so there is
scope for expansion. The variable names are:

Address Name Notes
(0/1,192) = Temporary data
(2/3,192) - ditto

(4,192) ASCII

(5,192) =

(6,192) Line 0 to 31
(7,192) Colm 0 to 89
(8,192) Length 1to 90
(9,192) Line count 1 to 31

(10,192) - spare

(11,192) - spare

(12,192) - Storage

0 - of

(19,192) - ASClIIs

There are three sections to the program that gives access to the screen
material (See PCW Machine Code),

Chapter 7 85

1, An executive section
2. Calculation the ‘Jump Userf Addr
3. The sequence of operations to be performed

Sections 1 and 2 are identical in all applications so the same piece of
code is needed by them all. The code, which I have called "HANDL'
(Handling Routine), startsat (20,192) and lists as follows:

HANDL (20,192)

call USERFN 205 26 192 Section 1

DEFW 233 O

ret ¥ 201

ldhl, (1) 42 10 Section 2
Id de, 87 17 87 0

add hl, de 25

jp (hl) 233

IMPORTANT NOTE

A program making use of HANDL must point BC to the address of the
application and the application must terminate with a ‘ret’. HANDL also
terminates with a ‘ret’ (%) so it will return to the place after whatever ‘call’
preceded its use.

Two examples of this are two sub-rs that find use in many screen pro-
grams so they too should be residents of block 7. They are FADDR
(‘Find Address’), which finds a screen address of the top byte of a
print position, and BLEN (‘Bar Length’), which calculates the num-
ber of bytes in a given length of a print line. (See page 91.)

When using FADDR, the line and column numbers must have been
putinto (6/7,192). If successful, the address is returned in HL with
Cy reset. If an impossible line or column number is specified then Cy
is returned set indicating that the HL value should be ignored. Be-
cause it is important not to poke data bytes wrongly into areas used by
the operating system, as a further safety measure the sub-r also tests
the calculated address. If it lies outside the screen data area then Cy
is returned set, however I inserted this extra level of checking for a
special occasion but it is irrelevant in most cases. If you want to speed
up this often-used routine then remove the code between /#*...%/,
but always test Cy on return.

86

FADDR (35,192)

/%.

lda, (6,192)
cp 32
ccf

ret ¢

inca

Id hl, ROLLER

ldde, 16
add hl, de
dec a

jr nz -4

Ide, (hl)
inc hl
Idd, (hl)
ex hl, de
add hl, hl

lda,(7192)
ora

jrz

cp 90

ccf

ret ¢

Id de, 8
add hl, de
dec a
jrnz -4

;x hl, de

Id hl SCREEN

ora
sbc hl, de

ccf

ret ¢

Id hl SCREEN

sbc hl, de
ret ¢

ex hl, de
ret

58 6 192
254 32
63

216

60

33 240 181
17 16 0
25

61

32 252

94
35
86
235
41

58 7 192
183

40 11

254 90

63

216

17 8 0
25
61
52 252

235

33 48 89
183

237 82

63

216

33 47 179
237 82

216

235 .-
201

PCW Super Code

Line No

Reject if
larger
than 31

Roller-Ram start minus 16
Step size
Step to

entry for
this line

Extract Roller
entry
into DE
Then into HL
Double it

Colm No
Finish

if zero
Reject

if more

than 89

Adjust
address
for

colm No

Address into DE
Lowest screen address
Reject
result
if
too low
Highest screen address
reject if
too high

Result back into HL
and finish

Chapter 7 8 7

Colm 0 Colm 1 Colm 2
T O O O O 12
CTTTIITT]
16| CCTILIID) |
5| o | oo oo
CITTIIT | CITTITT
LTI | COTLITTIT
i CITTITT0 | CITITTIT O
e 30| T | OO0 | T O
| PSSt T W - r e H-10
anssnsns]inansnans] | ennansue
8| CLLLITT | CTTI O] | (TTTTII D]
7| oo | oot | oo
CILIILID | OO | OO n
(CILITD | O D | OO
; LTI | OO0 | (T
Line 31| =P | EOCCOTT D | O
!
CIILITT 0 | COTLIT O | OO
o| OO0 | OG0 | COLrLrn
|

0 7 8 15 16 AT

The Line and Column positions of the co-ordinates (12,10)

Universal screen addresses

FADDR finds the address of the top of a print location, so there is not
much left to do to find the address and bit number of any screen pixel.
The screen is 256 pixels high by 720 wide. Taking each as a co-ordi-
nate point, the screen co-ordinates range from [0,0] at bottom left to
[719,255] at top right. The print position (line, colm) that contains the
point ‘P’ whose screen co-ordinates are (x,y) is given by

line
colm

31-INT (y/8)
INT (x/8)

The number of pixel lines that ‘P’ lies physically below the address of
(line, colm) is given by

88 PCW Super Code

pxlns = (y/8-INT(y/8)) x 8
The bit number of the pixel within the derived address is given by
bitno = 7-(x/8-INT(x/8)) x 8

The diagram on the previous page shows all this for screen co-ordi-
nates (12,10), which lie within Line 30, Column 1.

Calculation of the address and bit number of a co-ordinate pair can
therefore be calculated as in BITADR if the (x,y) values are supplied
as ‘v’ in A and ‘X" in HL. The listing of BITADR and the full pro-
cedure for using it are as follows. If you ‘call’ address (C,C),
HANDL will make a return to the location after your call because it
terminates with a ‘ret’. (See the ‘Alternative patterns’ heading
below for other methods of use):

Address (C,C):

ld (2 192), hl 34 2 192 Store ‘x’

1d (4192),a 50 4 192 Store 'y’

Id bc, BB 1 B B Point to BITADR

jp HANDL 195 20 192 and then use HANDL

BITADR Address (B,B)

lda,(4192) 58 2 192 Collect y’
srla 203 63 Divide it
srla 203 63 by 8

srla 203 63

ldb,a 71 Then into B
lda, 31 62 31

subb 144 Sub from 31
1d (6 192), a 50 6 192 Store ‘Line’
Id hl (2 192) 42 2 192 Collect ‘x’
srlh 203 60

rrl 203 29 Divide it

srl h 203 60 by 8

-l 208 29

srla 203 63

rrl 203 29

lda,l 125 Colm into A

89

Chapter 7
1d (7 192) a 50 7 192 and store
call FADDR 205 35 192 Line/Colm address
lda(4192) 58 4 192 Yy into A
and 7 230 7 ‘pxIns’
Ide a 95
ldd, o 22 0
add hl de 25 Add to Line/Colm address
1d (0 192) hl 34 0 192 and store
Ida(2192) 58 2 192 x'[256
and 7 230 7
ldb,a 71
lda,7 62 7
subb 144
Id (5192), a 50 5 192 Store
lde 1 14 1
ora 183 If “bitno" =0
jrz5 40 5 finish
slac 203 33 Else shift the
deca 61 bitin C
jrnz -5 32 251 by ‘bitno’ times
lda,c 121 Result into A
ret * 201 Finish

When the program has been run, the address containing the co-ordi-
nates is returned in (0,192) and in HL, and the particular bit
number within this address is returned in (5,192). Additionally, A is
prepared so that the set bit within it is the same bit that the co-ordi-
nates refer to. Thus if ‘P’ corresponds to bit No 4 of address (A,A),
then (A,A) will bein (0,192) and in HL, (5,192) will contain 4,
and only bit No 4 of A will be set.

The accumulator can therefore be used directly to influence the screen
byte. If then (with the Screen Environment in place; see the note on
the next page) you do

or (hl) 182
Id (hl), a 119

you will set the bit at the chosen co-ordinates without disturbing any
other bits. (If it was already set it will stay so.) You would comple-
ment it (set it if reset and vice versa) if the first instruction were
changed to “xor (hl)’, and you would be sure of resetting it with the
sequence

90 PCW Super Code

Idb, a 71

or (hl) 182
xor b 168
Id (hl) a 119

Proof of the accuracy of BITADR can be derived by doing the follow-
ing with the Screen Environment in place :

PROOF
push af 245
Id (hl), 255 54 255
xor (hl) 174
Id (hl), a 119
lde, 1 14 1
call BDOS 205 5 0
pop af 241
continue...

This will produce a bar of light at the appropriate place on the screen,
but missing from it will be the pixel that corresponds to the chosen co-
ordinates.

Note on use

In case it is not clear: BITADDR returns the address and the bit num-
ber you want, but the address relates to Blocks 0, 1, & 2 (ie. from
the Screen Environment). When you return from BITADR, the TPA
will have been re-established so blocks 4, 5, & 6 will now be in place
again (Bank 1). Hence poking something into the returned address
without re-establishing the Screen Environment will not affect the
screen, it will affect only Bank 1. You can use 'PROOF either with
HANDL in the way described for all other screen applications, or you
can temporarily tack it on to the end of BITADR at the place marked
by the asterisk (%), just before the final ret’.

Alternative use patterns

The modular approach really is modular so it is flexible enough to be
used in a variety of ways. If the pattern is not clear then stick to one
version until you see the point of it. After that you will be free to pick
and choose as you see fit.

Chapter 7 9 1

An alternative pattern that could be used would be to include part of

what is listed above into your main program, and then make a ‘call’
to 'HANDL, as follows:

program listing . . .

Id (2 192), hl 34 2 192 Store ‘x’

Id (4192),a 50 4 192 Store Yy’

Id bc, BB 1 B B Point to BITADR

call HANDL 205 20 192 and use HANDL
*

continue . . .

In this case the storing of X" and ‘y’ and the loading of BC are part
of the body of the main program, so a ‘call’ is made to ‘HANDL
instead of a ‘jump’. HANDL then makes a return to the place marked
by the asterisk.

Byte counting

The second and much shorter standard sub-r ‘BLEN’ finds use in
such operations as making cursor bars or otherwise manipulating spe-
cific lengths of print lines. On entry the required number of columns
to be manipulated must be at (8,192). The result is returned in HL
with Cy reset. Any bar length including zero is accepted, so it is
possible for the bar to extend over several print lines. It is the respon-
sibility of the programmer to ensure that when in use such a bar does
not encroach beyond the end of screen data. (See 'PCHK’ below.)

BLEN (94,192)

Id hl, (8,192) 42 8 192 Number of columns
Idh,0 38 0 into HL

add hl, hl 41 Multiply

add hl, hl 41 by

add hl, hl 41 8

ret 201 Finish

One way of checking that the end of a bar is not beyond the end of the
screen is to use ‘PCHK’ (Position Check). There are 2880 print loca-
tions on the screen (32 times 90). PCHK tests to see if the number of
the line/colm intersection in (6/7,192) plus the bar length in (8,192)
exceeds 2880. If it does Cy is returned set.

92 PCW Super Code

PCHK
1d hl (6,192) 42 6 192
Idh,0 38 0
add hl, hl 41
% push hl 225 Store twice HL
add hl, hl 41
add hl, hl 41
push hl 225 Store 8 times
add hl, hl 41
push hl 225 Store 16 times
add hl, hl 41
add hl, hl 41 64 times
pop de 209
add hl, de 25 Add 16 times
pop de 209
add hl, de 25 Add 8 times
pop de 209
add hl, de 25 Add 2 times (=90 times)
lda, (7,192) 58 7 192
ldc,a 7 9 Colm No into C
Ida,(8,179) 58 8 192 Bar length into A
add c 129 Add the two
ldd, 0 22 0
Ide, a 95 Into DE
add hl, de 25 ¥ Total into HL
*%. Id de, 2881 17 65 11 Max allowable + 1
ora 183 Subtract from
sbc hl, de 237 82 actual and
ccf 63 adjust Cy
ret 201 ..k

PCHK first multiplies the line number by 90 (90=64+16+8+2) to
count the number of print positions in full lines and then adds the
number of extra columns. 2881 is then subtracted from this total of
print positions, which ought to set the carry flag. Cy is therefore
complemented so that it is returned reset if the count was acceptable,
and set if it was not acceptable.

Program technique

The first part of PCHK between the single aterisks could be shortened
to:

93

Chapter 7
push hl 229 Put the HL value
pop de 209 into DE also
ld b, 89 6 89
add hl, de 25 Add it a further
djnz -3 16 253 89 times

but this is very much slower than the version given.

The last part between the pairs of asterisks follows my principle of
being visually obvious, though I think I would prefer:

Id de, -2881 17 191 244 Put 65536-2881 into DE
add hl, de 25 Add the negative
ret 201

Character addresses

Although not strictly a screen consideration, a common requirement
of handling screen operations is finding the relevant addresses of re-
quired characters within the Character Matrix RAM. This service is
performed by the following sub-routine located at (150,193) in my
machine. On entry the required ASCII is in A. Its address is re-
turned in HL.

FASC Address (150,193)

ldl,a 111 ASCII into

ldh,0 38 0 HL

add hl, hl 41 Multiply

add hl, hl 41 by 8

add hl, hl 41

Id de, RAM 17 0 184 Matrix RAM address
add hl, de . 25 Character address

ret 201 Finish

Note on USERF

I developed the above modular approach to make it simpler to use
screen routines that need to share each other’s data, but the modular
approach is but one way of stating how the Screen Run Routine oper-
ates. However, USERF can be presented in other ways, and I employ
some of them elsewhere in the book. This point was covered in Chap-
ter 2, ‘The Set-Up'.

94 PCW Super Code

Chapter 8

Screen manipulations

The basic idea of the modular approach to screen data handling was
developed in Chapter 7, and an application of it is described under
REVBAR (on page 133), which reverses a length of print line to make
a cursor. The technique of screen manipulations can be further ex-
tended to a wide variety of applications, several of which are de-
scribed below.

SCREEN BLOCKS

Whereas REVBAR reverses a continuous series of bytes to make a bar,
‘MABLK’ (‘Make a Block’) can perform a variety of manipulations on
an area of screen. The area can be any size but it must be square or
rectangular. You specify its top left corner by line and column, its
width in columns, and its height in lines. Irregular areas can be treated
by several calls of the technique.

You can subject the area to any operation that can be specified for the
A register, such as ‘xor a’ (blank), and ‘cpl’ (reverse), as well as
1da, N, ‘or N’, ‘and N’, ‘xor N’, etc. ‘Ld a, 85 givesa dimly lit
block, ‘Id a, 255’ gives a brightly lit one. The only restriction is that

Chapter 8 95

these operations must be describable in one or two bytes of opcode,
and before you use the sub-r HL must be loaded with them. If there
is only one byte then the other must be specified as zero.

On entry the data supplied to the sub-r is as follows:

Ereg or (6,192) Line number of top (0 to 31)
D reg or (7,192) Left edge column (0 to 89)

Creg or (8,192) Width in colms (1 to 30)
B reg or (9,192) Height in lines (1to 32)
HL register-pair Two opcodes

Once again it is the responsibility of the programmer to see that sub-r
doesn’t do silly things through receiving silly data, though some safe-
guards are built in. As with REVBAR, there are two starts which are
used according to the location of the data. If you are feeding fresh data
in DE and BC, then use Start 1. If the data is already in the variables
area, then use Start 2.

MABLK
Start 1
Id (6,192) de 237 83 6 192 Put data
Id (8,192) be 237 67 7192 into variables
Start 2
Id (PROG) hl 34 X+19 192 Opcodes into program
Id bc PROG 1 X X Point BC to program
jp HANDL 195 20 192 as required by HANDL

Program: Address (X,X)
call BLEN 205 94 192 Bytes into HL
1d (0,192) hl 34 0 192 Store

Line
Id be, (0,192) 237 75 0 192 Bytes into BC
call FADDR 206 35 192 Screen address into HL
ret c 216
ex hl, de 235 into DE
Byte
Id hl1 47 179 33 47 179 Last screen address
Id a (de) 26 Get byte
DEFW ¥ NN Opcodes
Id (de), a 18 Replace byte
inc de 19 Next
ora 183 If now beyond

sbc hl, de 237 82 end of screen data

96 PCW Super Code

ret ¢ 216 then finish

dec bc 11 Decrement count
Ida,b 120 of bytes

orc 177 and loop

jr nz Byte 32 239 if not zero

ld hl, 6 192 33 6 192 Next line

dec (hl) 53 down

Id hl, LINES 33 9 192 Else point to Line
dec (hl) 53 count & decrement
jr nz Line 32 220 Next line if not zero
ret 201 Else finish

You will see that MBLK is very similar to REVBAR except that it
treats each line in turn and loops to the next one if the line count has
not reached zero. The two opcodes are inserted at the point marked
by the asterisk (%), whichis 19 bytes on from (X, X).

CUSTOMISED PRINTING

The process of adding edging and other embellishments to screen dis-
plays is normally slow because of the time taken by CP/M to work
out lots of screen positions. Because we are programming for our-
selves (and have our wits about us) and not for Joe Public (who
hasn’t) we can cut out nearly all the error checking that CP/M has to
do and save some time.

The fastest way of printing is to have the whole screen display ready
prepared in the Memory Disc and rapidly poke it into place. This is
the approach used in making loading screens (see Chapter 13) and it is
OK for a small number of important displays, but as each one occu-
pies 23,040 bytes (90k) they are something of a luxury item.

However, the following four customised methods are much more eco-
nomical of memory and are each tailored to a particular type of print-
ing requirement. The first is a universal approach that produces very
attractive effects for screen filling and information display. The second
is a replacement for conventional printing where a sequence of ASCIIs
is required at consecutive screen locations. The third and the fourth
are ideal for placing invariant bytes (such as borders and other deco-

Chapter 8 97

rations) onto a single line or into a single column.

They are quite fast when used in their specialised roles, and operate
by poking the ASCII bytes directly into the screen data area in the
Screen Environment. In all of them the tables must be in Common
Memory unless you have made special arrangements to access them
with the Screen Environment in place. All of them will screen print
any ASCII from 0 to 255.

Printing from a table

This approach uses small data tables that are economical on memory,
and it is universally applicable to any printing situation. In two sec-
onds it produces a whole screen from only 34k of data table com-
pared with 90k for bit-mapping, and generally this time would be
much reduced because it would be unusual to need the whole 34k;
the table needn’t store data for screen locations that will be blank or
left unchanged.

An attractive feature is that the table can store the data in any order
you like. Hence you can arrange for the display to appear in intrigu-
ing patterns; from the centre outwards, maybe, or in waves, or with
a random speckling. You can even use it to produce ‘animated pat-
terns’. In some applications you may decide to slow it down a bit for
these effects to be at their best. A pause (see Chapter 3) before the
final ‘jr nz Loop” would do the trick.

In the data table each data item is stored as three bytes. The first two
are the position, Line (0 to 31) and Column (0 to 89), and the third is
the ASCII to be printed. Printing is given by PRTABL, which is
listed below. On entry the initialisation data is supplied as follows:

HL pair or (0,192) Address of data table
DE pair or (2,192) Number of chars to print

PRTABL
Start 1

Id (0,192), hl 34 0 192 Data into

Id (2,192), de 237 83 2 192 variables area
Start 2

Id bc, PROG I X X Load BC as

jump HANDL 195 20 192 required by HANDL

98

PCW Super Code

Program Address (X,X)
Loop:
1d hl, (0,192) 42 0 192 Table address
Id a, (hl) 126 Line
1d (6 192), a 50 6 192 store
inc hl 35
Id a, (hl) 126 Colm
Id (7 192),a 50 7 192 store
inc hl 35
Id a, (hl) 126 ASCII
inc hl 35
Id (0 192), nl 34 0 192 Next entry address
call FASC 205 150 193 Get character address
push hl 229 Store
call FADDR 205 35 192 Screen address in HL
pop de 209 Character address in DE
ex hl, de 235 Swop
Id be, 8 1 80 8 bytes
Idir 237 176 Transfer
Id hl, (2 192) 42 2 192 Decrement count
dec hl 43 of
Id (2 192), hl 34 2 192 characters
lda, h 124 Check
orl 181 remainder
jr nz Loop 32 213 & loop if not zero
ret 201 Else finish

Sequence printing

PRTABL is a universal method of printing any kind of data allowing
for random access to the screen for attractive effect. However, most
printing is more sequential than that so less positional information
needs to be tabulated. PRSEQU requires only a sequence of ASClIs,
the screen start position, the number of characters, and the address
where the sequence of ASCIIs is stored. It is a replacement for normal
CP/M printing with either fnc No 9 or No 111. Because PRSEQ can
be used to print a ‘slice’ out of a long sequence, it is useful in, say,
printing abbreviated names of months by calculation from a long list;
if some calculation relating to month No 3 puts the appropriate ad-
dress in to HL, then the sub-r would print ‘MAR" out of

Chapter 8

JANFEBMARAPR...

E reg
D reg
A reg
HL pair

PRSEQU

89

On entry the data supplied is:

Print line
Print column

Number of chars

(0 to 31)
(0 to 89)
(1 to 255)

Address of ASCII sequence

Id (6 192), de 237 83 6 192
Id (0 192), hl 34 0 192
Id (2192),a 50 2 192
Id bc PROG 1 X X
jump HANDL 195 20 192

Program: Address (X,X)

Loop:
Id nl, (0,192) 42 0 192
Ida, (hl) 126
inc hl 35
Id (0,192), hl 34 0 192
Id a, (hl) 126
call FASC 205 150 193
push hl 229
call FADDR 205 35 192
pop de 209
ex hl, de 235
Id be, 8 1 8 0
Idir 237 176
Id hl, 7 192 33 7 192
inc (hl) 52
ld hl, 2 192 33 2 192
dec (hl) 53
jr nz Loop 32 224
ret 201

Repetitive line printing

Data into
variables

Load BC as
required by HANDL

Table address

Character into A

Point to next
and store

ASCII
Get character address
Store

Screen address in HL
Char address in DE
Swop

8 bytes
Transfer

Increment

Colm No
Decrement count

of characters

& loop if not zero
Else finish

For repetitive printing of identical characters (for which it is excessive
to have to specify every Line/Colm and ASCII value) the situation

100

PCW Super Code

ation can more easily be handled by calculation. In this case PRLIN
fills the bill. It is quite fast for printing the horizontal bits of borders,
and by inserting the right data you can print single characters. On

entry to it the data supplied is:

E reg Print line (0 to 31)
D reg First column (0 to 89)
L reg ASCII code to print (0 to 255)
H reg Number of chars to print (1 to 255)
PRLIN
Id (0,192) hl 34 0 192 Data into
1d (6,192) de 237 83 6 192 variables
Id bc, PROG 1 X X Load BC as
jump HANDL 195 20 192 required by HANDL
Program: Address (X,X)
Ida(0192) 58 0 192 ASCII
cail FASC 205 150 193 Get character address
Id (2 192) hl 34 2 192 Store
Loop:
call FADDR 205 35 192 Screen address in HL
Id de (2, 192) 237 91 2 192 Character address in DE
ex hl de 235 Swop
Id bc 8 1 80 8 bytes
ldir 237 176 Transfer
Idhl7192 % 33 7 192 Increment colm
inc (hl) 52 No
ldhl1192 33 1 192 Decr character
dec (hl) 53 count
jr nz Loop 32 233 & loop not zero
ret 201 Else finish

Repetitive column printing

PRCOL is designed for printing a single character in a vertical column
so it does the sides of borders very nicely - much faster than CP/M
attempting the same effect. It is identical to PRLIN except that the
address in the instruction marked by the asterisk (%) is changed so
that the line is incremented not the column.

Idhl7 192

is changed to Id hl1 6 192

Chapter 8 1 01

SCREEN SHIFTING

As well as printing to the screen, there is frequently a need to move
parts of the display about, to make room for new information, for
example, or simply for pleasing effect.

Scrolling up the whole screen can be effected by using ‘Line Feed’ (10)
on the bottom text line, and scrolling it down can be effected by the
escape sequence 27 73 whilst the cursor is on the top line.

Scrolling only a part of the screen is visually more impressive, how-
ever. When the scrolled section is roughly central and surrounded by
stationary text or graphics, a sophisticated ‘Window’ effect can be
produced. This is further enhanced if new text is fed into the window
by Custom Printing, or by some other means, and you can provide
the window with a border if you want to. Obviously when a scroll up
is made the top line of the area is lost (overwritten by the line below),
and the lowest line is duplicated on the line above it. To keep a
consistent display, fresh text (or blanks) must be fed onto the bottom
line as soon as the scroll is complete. Similar but inverted considera-
tions apply to scrolling down.

Horizontal screen movements are also possible (as shown by Lo-
coscript when you are least expecting it). Similar considerations ap-
ply to them though they are, if anything, rather more impressive than
scrolls if handled properly. The sequence; ‘complete sideways with-
drawal of text, pause, new text appears’ looks good.

Partial scrolling

The sub-r ‘SCRUP’ scrolls up any part of the screen when the follow-
ing data is supplied:

Ereg or (6,192) Top line (lost) (0 to 30)
Dreg or (7,192) Leftmost Colm (0 to 89)
Lreg or (8,192) Num of columns (1 to 90)
Hreg or (9,192) Num of lines (1to32)

SCRUP

Start 1:
Id (6 192), de 237 83 6 192
Id (8 192), hl 34 8 192

102

PCW Super Code

Start 2:
Id bc PROG 1 X X
jp HANDL 195 20 192

Program: Address (X,X)
call BLEN 205 94 192 Number of bytes
ret ¢ 216 to transfer
I1d (0 192) hl 34 0 192 Store

Loop:
call FADDR 205 35 192 Address of
ret ¢ 216 acceptor line
Id (2 192) hl 34 2 192 Store
Id hl TOP 33 6 192
inc (hl) * 52 Donor line is
call FADDR 205 35 192 one line below
ret ¢ 216
1d be (0 192) 237 75 0 192 Byte count
Id de (2 192) 237 91 2 192 Acceptor address
Idir 237 176 Transfer
ld l COUNT 33 9 192 Reduce
dec (hl) 53 count
jr nz Loop 32 225 Loop if not zero
ret 201 Else finish

It obtains the byte count from BLEN, and transfers that many bytes
into each line from the line below. At each loop it increments the top
line number and decrements the count until it reaches zero.

The program for partial downward scrolls ‘SCRDN’ is identical ex-
cept that the ‘inc (hl)’ marked by the asterisk (%) is replaced by
‘“dec (hl), and the L regand (6,192) contain the bottom line number
(the one to be overwritten).

Panning rieht & left

‘Panning’ is the horizontal equivalent of scrolling. The following list-
ings pan a selected width of a selected number of lines either right or
left by one character. It is not a technique I have ever used in public,
but it looks pretty snazzy, particularly if only one line is panned, and
there must be uses for it other than in Locoscript. If you want to

Chapter 8

103

hypnotise someone with your message, you can make a sort of screen
ticker-tape with it - pan the message off the screen sideways whilst
feeding new characters in from the other edge. As with scrolling, you
always need to feed in a new character or characters at the receptor
end of the panned area. The entry data is

E reg Top line of panned section
D reg Ist panned column (leftmost)
Lreg Number of columns to be panned
Hreg Number of lines to be panned
PANLEFT
Id (6 192), de 237 83 6 192
Id (8 192), hl 34 8 192
Id bc, PROG 1 X X
jp HANDL 195 20 192
Program: Address (X,X)
Loop:
call BLEN 205 94 192 Bytes
ret ¢ 216
ldb, h 68 into
ldc, 1 77 BC
call FADDR 205 35 192 Start of line
ret ¢ 216 into HL
push hl 229 and save
ldde 8 17 8 0 8 bytes to next
add hl de 25 char to right
pop de 209 Orig
ldir 237 176 Move all left
Idhl 6192 33 6 192 Next
inc (hl) 52 line down
ldhl 9192 33 9 192 Reduce count
dec (hl) 53 of lines
jr nz Loop 32 228 Loop if not zero
ret 201 Else finish

A similar sub-r provides a one-character pan to the right, but in this
case note that DE refers to the column at the right end (which is
again the first one to be panned), not the one at the left end, which is
usual. The calculation of the addresses before ‘lddr could be smart-
ened up a bit, but this version is easier to follow.

104

PCW Super Code

E reg Top line of panned section
D reg 1st panned column (rightmost)
Lreg Number of columns to be panned
H reg Number of lines to be panned
PANRT
Id (6 192), de 237 81 6 192
Id (8 192), hl 34 8 192
Id bc, PROG 1 X X
jp HANDL 195 20 192
Program: Address (X, X)
Loop:
call BLEN 205 94 192 Bytes
ret ¢ 216
ldb, h 68 into
lde,l1 77 BC
call FADDR 205 35 192 End-of-Line
ret ¢ 216 address into HL
Idde, 7 17 7 0 Move to
add hl, de 25 bottom byte
push hl 229 Save address
Id de, 8 17 8 0 Subtract 8 bytes to
ora 183 point to next
sbc hl, de 237 82 char to left
pop de 209 Original into DE
lddr 237 184 Transfer
Id hl, 6 192 33 6 192 Next line
inc (hl) 52 down
Id hl, 9 192 33 9 192 Decrement count
dec (hl) 53 of lines
jr nz Loop 32 222 Loop not zero
ret 201 Else finish

For a pan left, the start point is the first byte in the first column to be
panned. All the bytes to the right of this are transferred 8 addresses
to the left by ‘Idir'. For a pan right, the start point is at the bottom
byte of the char in the rightmost column, so 7 is added to the address
of this column. All the bytes to the left of it are then moved 8 ad-
dresses to the right by ‘lddr’.

Chapter 8 1 05

TOP TO BOTTOM SCREEN INVERSION

Whereas the ideas described so far have involved the movement of the
data within the screen data area, the display can also be manipulated
by changing the contents of Roller-Ram (though you need to restore
it to its original condition if you want life to proceed normally thereaf-
ter). In this connection I am indebted to Geoffrey Childs for pointing
out the significance of Port 245, which can be used to set up a new
R-R. The idea is indicated in the following program which inverts the
screen contents so that the top line becomes the bottom line, etc., and
every line is itself turned upside down. As with all such programs it
needs to be in Common Memory.

SCINV
ldbc, X X 1 X X Point to sub-r
call Screen-R 205 90 252
DEFW 233 0
Ida, 94 62 94 Switch to
out (245), a 211 245 new Roller
lde, 1 14 1 Await a key
call BDOS 205 50
Ida, 91 62 91 Switch back to
out (245),a 211 245 original Roller
ret 201
Sub-r Address (X, X)
Id de, R-R 17 0 182 Original Roller
Id hl, New-end 33 254 198 End of new Roller
Idb, 0 6 0 Count 256 operations
Loop:
Id a, (de) 26 Transfer
Id (hl), a 119 a
inc de 19 pair
inc hl 35 0
Id a, (de) 26 bytes
Id (hl), a 119
inc de 19
dec hl 43 Point
dec hl 43 to next
dec hl 43 address in new Roller
djnz Loop 16 244 Repeat if count not zero
ret 201 Else finish

(Program after G T Childs)

106 PCW Super Code

Bearing in mind that Roller-Ram contains pairs of bytes each pair
being an address, the program transfers the contents of the normal
Roller to a new one, but it starts at the far end of the latter so that the
data appears in it in reverse order. (Note that to obtain a count of 256,
which is the number of addresses to be copied, B is loaded with zero
for the ‘djnz’. B 1is not tested until after it has been decremented so
zero is not found until 256 decrements have occurred.)

When the ‘out (245), N’ instruction is invoked, this tells CP/M that
Roller-Ram is to be found at address (0, 2xN). Our new Roller starts
at (0,188) so the value of N in this case is ‘94’. Because the Roller
addresses are fed in from the ‘far end’ of our new Roller, they are fed
inat (254,189), and this location is progressively reduced (by an ‘inc
hl’ and three ‘dec hl’s) after each transfer.

After the inversion, the program awaits a keypress and then switches
back to the original Roller by setting the value of N to 91, which
corresponds to the usual Roller address of (0,182).

The new Roller address is actually within the Character Matrix Ram,
but it corrupts only those characters of ASCII code larger than 127.
Because Common Memory is contiguous with the Character Matrix
Ram, I would have expected to be able to locate the new Roller in
Block 7, but this doesn't work for some reason.

107

Chapter 9

Character manipulations

This chapter deals with making modifications to the screen printable
characters listed on page 114 to 118 [547 to 554] of the manual, as
well as to any custom-made ones you may have generated.

Rotations and inversions

The following manipulations are useful where you need mirror im-
ages, or inverted or rotated forms, of exiting characters but you don’t
want to redesign them by trial and error. Such modified characters
find application in vertical printing (for graphs, etc.) and in games
where images need to keep their appearance inspite of changing direc-
tion. Unfortunately PCW characters suffer deformation if rotated
through 90 degrees because a print position is twice as high as it is
wide, but they are still quite recognisable and even have a special ap-
peal of their own.

108 PCW Super Code

In all cases the information required is

Lreg Subject ASCII
H reg Target ASCII

Thus if on entry HL contained (65,19) then the modified version of

“A” would be written into ASCII No 191 (“t™”), and subsequent
printing of ASCII 191 would print the new version of “A”.

Rotate right through 90 degrees

RRCHAR
Id (0,192), hl 34 0 192

Id bc, PROG 1 X X

jp HANDL 195 20 192
Program: Address (X,X)
lda, (0192) 58 0 192 Subject ASCII into A
call FASC 205 150 193 Get its address
push hl 229 and save
lda,(1192) 58 1 192 Target ASCII into A
call FASC 205 150 193 Get its address in HL
pop de 209 and subject address in DE
lde, 8 14 8 8 loops
Loop2:
push hl 229
Id a, (de) 26 Subject byte
ldb, 8 6 8 8 bits
Loop1:
slaa * 203 39 Bit into
rr (hl) * 203 30 (HL)
inc hl 35 Next target
djnz Loopl 16 249
pop hl 225 Original target
inc de 19 Next subject
dec c 13 Decrement count
jr nz Loop2 32 240 Repeat if not zero

ret 201 Else finish

Chapter 9 1 09

The sub-r first works out the addresses within Character Matrix RAM
of the source and destination characters. DE is given the first value
and HL the second. Because this is to be a right rotation, the top byte
of the source character will appear as bit 7 of all the destination bytes
(see diagram). However, it is actually put into their bit Os and at
each insertion the byte concerned is rotated right. By the time
the sub-r ends these bits will have been shifted as far as bit 7.

Subject ASCII Target ASCII
LT TT T
LLLTITTT]
LIl LI EL] [[T T [B]
(T TITTT]
CLITTTTIT]
LT LT LT] I T T[T 6

CITITTTT] EI LT T 1T T
Entry positions of bits
Final positions after 7 rrs

90 degree rightward rotation of a subject character

Rotate left

The sub-r for giving a leftward rotation is identical except that the two
instructions marked with asterisks are reversed:

slaa to srla 203 63
rr (hl) to rl (k) 203 22

Character inversions

Characters can be inverted so that the top becomes the bottom and
also the left becomes the right by two consecutive rotations as above,
the first being into a dummy ASCIL

Mirror-image inversion (which is different) can be performed about
either of the two principle axes. Inversion about the horizontal axis
swops the top and the bottom but preserves left and right. Inversion
about the vertical axis preserves top and bottom but swops left and
right.

1 10 PCW Super Code

Top to bottom inversion

Lreg Subject ASCII
H reg Target ASCII

TBINV
Id (0,192), hl 34 0 192

ldbc, PROG 1 X X
jp HANDL 195 20 192

Program: Address (X, X)
lda, (0192) 58 0 192

Subject ASCII

call FASC 205 150 193
push hl 229 Save its address
lda,(1192) 58 1 192 Target ASCII
call FASC 205 150 193
ldde, 7 17 7 0 Add 7 to point
add hl, de 25 to its last byte
pop de 209 Subject address into DE
ldb 8 6 8 8 bytes

Loop:
Id a, (de) 26 Transfer
Ild (hl),a 119 bytes
inc de 19 to the inversion
dec hl 43 location
djnz Loop 16 250
ret 201 Finish

Side to side inversion

L reg Subject ASCII

H reg Target ASCII

SSINV
Id (0,192), hl 34 0 192

ldbe, ROG 1 X X
jp HANDL 195 20 192

Chapter 9 1 1 1

Program Address (X,X)

lda, (0192) 58 0 192 Subject ASCII
call FASC 205 150 193 Get its address
push hl 229 and save
Ida,(1192) 58 1 192 Target ASCII
call FASC 205 150 193 Get its address into HL
pop de 209 Subject address into DE
ldc, 8 14 8 8 loops
Loop2:
Id a, (de) 26 Subject byte
ldb, 8 6 8 8 bits
Loop1:
srlia 203 63 Transfer bit
rr (hl) 203 22 into (HL)
djnz Loop1 16 250
inc hl 35 Next target
inc de 19 Next subject
dec c 13 Decrement count
jr nz Loop2 32 242 Repeat if not zero
ret 201 Else finish

Diagonal rotations

You can also rotate/invert about the diagonal axes by choosing a com-
bination of the directions for ‘shift a’ and ‘rotate (hl)’, but there is
little point in it as far as letters and numerals are concerned because
the visual impact appears different in different cases. Rotating about
the top-left/bottom-right axis gives the impression of rotating letters
that have a vertical axis of symmetry (such as ‘A’, ‘W’ and ‘Y’)
through 90 degrees to the left, but those that have a horizontal axis of
symmetry (such as ‘B’,’C’, ‘D', etc.) seem to be rotated to the right.
Rotating about the other diagonal has the opposite effect.

Making large characters

The following routine makes characters of twice the usual size (four
times the area). As before, you specify the ASCII of the character that
is to be enlarged and which ASCII code is to receive it, though in this

1 12 PCW Super Code

case the three following RAM locations are also used to store the
shape, a quarter in each. The storage sequence is

Top left quarter in First Ram location
Bottom left quarter in Second
Top right quarter in Third
Bottom right quarter in Fourth
The feed data is

Lreg Subject ASCII
H reg Target ASCII (1st Ram location)

LARGE
Id (0,192), hl 34 0 192

Id bc PROG 1 X X
jp HANDL 195 20 192

Program: Address (X,X)

Ida, (0192) 58 0 192 Subject ASCII
call FASC 205 150 193 Get its address
push hl 229 and save
push hl 229 it twice
Ida (1192) 58 1 192 Target ASCII
call FASC 205 150 193 address into HL
Left side
pop de 209 Subject address
ldc8 14 8 8 bytes
Loop1
ldb, 4 6 4 4 left bits
ld a, (de) 26 Subject byte
Loop2
slaa 203 39 Move the bit into Cy
rl (hi) 208 22 Then into (HL) and
sla (hl) 203 38 move it again
djnz Loop2 16 248 Do this 4 times
Id a, (hl) 126 Get the HL byte
srla 203 63 and move it right
or (hl) 182 Combine with (HL)

ld (hl) a 119 & put it back into (HL)

Chapter 9

inc hl
Id(l)a

inc hl

inc de

dec ¢

jr nz Loop1

Right side

pop de
Ide, 8

Loop3:

ldb, 4

Id a, (de)
Loop4:

srla

rr (hl)

srl (hl)

djnz Loop4

Id a, (hl)
slaa

or (hl)
Id (hl), a
inc hl

Id (hl), a
inc hl
inc de
dec ¢

jr nz Loop3
ret

35
119

35
19
13
32 233

209
14 8

6 4
26

203 63
203 30
203 62
16 248

126

203 39
182

119

35

119

35

19

13

32 233
201

Duplicate at the
next address below

Next subject &

target bytes
Decrement the byte count
Loop if not zero

Recover subject

All as
above
except
reversed movement

Else finish

113

The program enlarges the left side of the subject into the first two
target ASCIIs, and then does the right side into the other two. The
top left bit of the subject must be quadruplicated in the top four left
corner bits of the target, and so on throughout the subject and target.

Consider the left side. The four left bits of the subject byte are mapped
into the target byte, but at twice the spacing; bit 0 goes to bit 0, bit 1
goes to bit 2, bit 2 to bit 4, and bit 3 goes to bit 6. After these have
been copied, the target byte is copied into A, and A is shifted to the
right so that all its set bits are to the right of the originals. A is then
ORed with the original, duplicating all the set bits, and is loaded back

1 14 PCW Super Code

into the target byte. Each of the original set bits now has another set
bit to the right of it. This completed byte is then duplicated into the
byte below. Each subject bit is therefore mapped to four bits in the
target.

4

[[[1] [e NN O
(L] T]
EENERREE EEEEE T [T
EEEEEEEE EEEEE | [
R [[[[T] CLLIL] [[T]
LTI LELLLIII) EQLLP1TTL]

LITTT 7] I
[(TTTTTTT% (IITITTTT11] CIIIITrrTl]

Subject ASCIL = |

1st Target 3rd Target
[
i
[
|
[

[1]
{]
[[]]
l [[]
l [[]

REN
[T TT]
N

CITTTTITT) LTI
CITIITTT) [T TTT]
CILTTITTT) CLITILTS
|
2nd Target 4th Target

[
[
|

Enlargement of a Subject ASCII on to four target ASCIIs

Making characters

If you have designed a set of new characters for a particular applica-
tion (see PCW Machine Code), each time the program is loaded it
needs to re-establish their shape. This can most easily be done by
having a standard routine in Common Memory and calling it from the
initialisation sequence, which can be located anywhere, as can the
data table that contains eight bytes for each character. The characters
are inserted into the CP/M Character Matrix RAM at consecutive lo-
cations starting at a chosen ASCII code, and can be printed by any
screen printing technique. The sub-r is called with the following sup-
ply of data:

HL pair ~ Addr of data table
E reg Number of chars to make
D reg 1st ASCII code

Chapter 9

MCHAR

1d (0 192), hl 34 0 192
Id (2 192), de 237 83 2192

Loo
Id hl, (0 192) 42 0 192
ldd, h 84
lde, 1 93
Id be, 8 1 80
add hl, bc 9
1d (0 192), hl 34 0 192
ex hl, de 235
Id de, 12 192 17 12 192
Id be, 8 180
Idir 237 176
Id bc, PROG 1 X X
jp HANDL 195 20 195
Idhl, 2192 33 2 192
dec (hl) 53
jr nz Loop 32 223
ret 201

Program: Address (X, X)
Ida,(3192) 58 3 192
call FASC 205 150 193
ex hl, de 235
ldhl, 12 192 33 112 192
Id be, 8 1 80
Idir 237 176
ret 201

Desioning new characters

115

Table address into
HL and copy

to DE
Point to

next entry

and store
Back into HL
Transfer character

bytes to

variables

Decrement count

of characters

and loop if not zero
Else finish

ASCII code
Its address

into DE
Character bytes
Transfer

8 bytes

Return

When it comes to actually composing the new characters, the follow-
ing design tool is quite handy. It gives a giant version of the character
and a normal sized one, so you can watch the shape develop on both

of them.

It uses ASCII codes 253 and 254. The first one takes the new design
and additionally the new bytes are also stored at (245-252,227) from
where you can transfer them to any ASCII you wish. ASCII 254 is
used to make a fully lighted recatangle (all 255s). To modify the shape

1 16 PCW Super Code

being designed move the cursor over the byte you want to change by
pressing the up and down arrows and then press RETURN. The bar
cursor will be replaced by the typing cursor. Type in one, two, or
three digits to state the byte value you require for that location and
press RETURN when you have done it. When you have have entered
the desired value for all eight bytes (you can change them as often as
you like), press EXIT.

The addresses I used to develop the listing are as given below, but you

can change all of them except the ones for the ‘modular screen rou-
tines’.

Feed Data Required

The program requires a set of 255 bytes to make the ‘Block’ character,
a space to accomodate the new character data, and a ‘Position String’,
as follows:

(235 -242,227) All 2555
(245 - 252,227) Bytes of the new character
(120,226) Position String made up of:
27 89 X X 36’
The main variables addresses for screen data storage are given below
as offsets from (0,192):

0 Menu top line reference (21)

1

2 This line number (1to8)

3

4 ASCII

5

6 This line number (21 to 28)
7 Cursor column number (29)

8 Cursor width (19)

9 Cursor bottom line (28)

10 to 17 ASCIIs

The main screen string used to display the developing character, etc.
starts at address (130,226), and is made up as follows:

27 69 27 89 36 62 27 114
“DESIGN A CHARACTER” 27 117

Chapter 9 1 17

27 894056 134 138 ..(8)..138 140
27894156 133 32..(8)..32 133
2789425 133 32.. (8)..32 133
27894356 133 32..(8)..32 133
27894456 133 32..(8)..32 133
27894556 133 32..(8)..32 133
27894656 133 32..(8)..32 133
27894756 133 32.. (8)..32 133
27894856 133 32 w (882 133
27 894956 131 138 ..(8)..138 137

27 894480 150 154 156
27 894580 149 253 149
27 8946 80 147 154 153

27 89 63 66
36

The main body of the string (excluding the border round it) is made
up of eight lines of eight ‘32" ASCIIs (that take the place of
“32...(8)...32" in each of the above lines). The first ‘32’ is at address
(177,226) and the first on the subsequent lines are all 14 bytes on
from the one before. As the design proceeds the ‘32’s (SPACES) will
be replaced by ASCII 254s (full rectangles) for each set bit of the de-
signed character, thus creating a giant image of it.

There is also a requirement for a lower screen string at address
(69,227). This is used in conjunction with the cursor to enable input of
the new bytes values of the designed character. It is made up from the
following positions and text:

27 895364 “Top line:”
27895464 “2nd line:”
27 895564 “3rd line:”
27 8956 64 “4th line:”
27 8957 64 “5th line:”
27 89 58 64 “6th line:”
27 8959 64 ”Bot line:”

27 89 63 64
36

The following listing of the program is in the form to be ‘jumped’ to,
and hence it jumps back to your MENU (whatever that is) on com-

118

PCW Super Code

pletion. If you want to ‘call’ it, replace the two lines marked by

asterisk (%) with

ret ¢ 216 0 0
CHDES: Address (0,228)

Id a, 253 62 253

Id hl, Bytes 33 245 227

call MCHAR 205 5 193

Ida, 254 62 254

Id hl, Bytes 33 235 227

call MCHAR 205 5 193

ld de, String 17 130 227

lde, 9 14 9

call BDOS 205 5 0

Id de, String 17 69 227

lde, 9 14 9

call BDOS 205 5 0

ldde, L/C 17 21 29

Id hl, W/B 33 19 28

call CSCAN 205 2 194

jpe MENU % 218 X X

call ADDRS 205 110 228
Loop1:

call REVBAR.2 205 121 192

Id hl, (6 192) 42 6 192

Id de, 32 46 17 32 46

add hl, de 25

Id (), hl 34 122 226

Id de, String 17 120 226

ldc, 9 14 9

call BDOS 205 5 0

Ida,3 62 3

ld(), a 50 ¥ X

call INTDIG 205 I 1

lda () 58 7 Z

dhnl, () 42 224 227

1d (hl), a 119

ldb, 8 6 8

Idhl() 42 220 227

Transfer any
existing bytes to
ASCII 253

Make the
block
character

Print the main
string

Print the lower
string

Establish the
bar cursor
Finish if
‘EXIT pressed

Else get address

Cancel cursor
Add 32 toln &
Col, and 14
extra to Col
Into position string
And print
the position

Specify a maximum of
3 digits
Accept the digits (see Chap 15)
Collect result
Address for this

byte

Eight bits
Address of large display line

Chapter 9

Loop2:
Idc, 32
slaa
jrnc2
ld c, 254
Id (hl), ¢
inc hl
djnz Loop2

Id a, 253
Id hl, Bytes
call MAKE

Id de, String
lde, 9
call BDOS

call CURSOR?2
jpc MENU %

call ADDRS
jr Loopl

14 32
203 39
48 2
14 254
113

35

16 244

62 253
33 245 227
205 5 193

17 132 226
14 9
206 5 0

205 13 194
218 X X

205 110 228
24 176

118

Test each bit
of A, & load
address with ASCII 254
for set bit or
ASCII 32 for reset.
Next

Put the bytes
into ASCII
253

Reprint the main string
without the
‘clear screen’

New cursor with

old specifications

Repeat

The routine makes use of the following sub-routine ‘ADDRS’ for de-
ducing the relevant address within the large display and the address at
which this new byte should be stored. It calculates from the line num-
ber at which the bar cursor is now placed.

ADDRS
lda, ()
sub 20
ld(),a

Large display:
ldhl, NN
Id de, 14
add hl, de
dec a
jrnz -4
Id() hl

Address

(110,228)
58 6 192
214 20
50 2 192

163 227
14 0

33
17
285
61
32
34

252
220 227

concluded on next page . . .

Cursor line No
minus 20
Store

1st address minus 14
Add 14

for

each

line number
Store result

120

Byte storage:
Ida, ()
ldhl, NN
inc hl
dec a
jrnz -4
1d()H

ret .

58 6 192
33 244 227
35

61

32 252

34 224 227

201

PCW Super Code

1st address minus 1

Store

It also needs the integer input routine ‘INTDIG’, which is described

in Chapter 15.

Chapter 10 1 21

Chapter 10

Basics of Menu design

Menu Style

Menus are usually the primary means of contact that users have with
the program, and it can be helpful to the program’s acceptabilty to de-
sign them well. Generally, users are not interested in the technical
niceties of the package, and won’t be impressed by your expertise.
Computers already have a name for doing wonderful things so the fact
that your program performs competently will be taken for granted.

On the other hand, menus that are untidy and difficult to understand,
or which use unfamiliar words, or don’t explain what is expected,
will convince the user that the program is not to be trusted, even if it
is technically flawless.

There is no prohibition against menus that look quite different from
each other when they are to perform quite different functions, butif a
sequence of similar menus is needed it is a good idea to pay attention
to two requirements.

The first is to establish a certain amount of uniformity; the menus
should at least bear a family resemblance to each other. It is good
practice, for example, to use the same column number for the left side

122) PCW Super Code

of the text. Otherwise when one menu is called from another the text
seems to jerk sideways. Similarly, unless the menus are of radically
different sizes, they should start on the same print line so that the text
of each is on the eye-line of the previous one.

The second requirement is that the user should have clear notification
of which menu it is that he is looking at; and this should extend be-
yond the simple matter of the title. For example the main menu may
be decorated with 4 asterisks on each side of the title, but its sub-
menus could be given fewer than that. Alternatively you might show
the main title in reverse video, but the titles of lesser menus in normal
video, all other features being the same. Subliminal clues like this will
help to orientate the user and make him more comfortable with the
program, though he may rot know why.

The most significant thing you can do for your menus is to make them
polite because there is nothing in this world more infuriating than a
smart-arsed machine. So don’t beep unecessarily. Beeps are an excel-
lent way to indicate that something unusual needs attention, but if I
press a wrong key I don’t expect a mere servant to get uppity with me
(Locoscript, I think, is intolerable, and the standard pitch of the PCW
beep is as aggravating as it could be).

Also make a practice of keeping the user informed. If the program
needs to go off by itself to do something secret (access a disk maybe) ,
don’t leave him looking at an untidy mishmash of what was happen-
ing a minute ago; blank the screen and display a simple explanation of
why there is a pause.

Marketing men will have no difficulty with taking these notions on
board, though we eggheads tend to the mistaken belief that packaging
is always trivial, though the most wonderful program in the world is
no good if no-one will use it.

User Instructions

‘Help’ screens are a good idea in some cases: when the user can't
remember what to do next, he summons such a screen to prompt him.
However, a comprehensive set of them takes an awful lot of program-
ming effort, and I prefer to supply a full set of written notes that con-
tain plenty of cross-references through which the user can locate the
answer to his particular query. Written instructions are almost always
needed anyway because screen text is not a satisfactory substitute for

Chapter 10 1 23

the paper equivalent. Apart from being more readable, paper-work is
more portable, it can be scanned at leisure, and two pages can be
studied simultaneously.

Choices

Menus are devices for offering choice. If a program is to offer only a
single menu at the beginning and will then get on with its task without
further help, you might as well put all the possible choices onto a
single screen because once he has made his selection the user will not
be pestered again. In these cases the text lines can be quite compli-
cated because they will be read only once. But make sure he knows
what an allowable response consists of: is he to press only “y” and
then wait, does he also have to press ‘ENTER’ as well, or does he
have to type “yes” in full, and what is he to do if neither ‘yes’ nor
'no’ seems appropriate ?

In cases where the program will constantly be asking for information it
is preferable to make the menus short (not offering too many choices,
and having short text lines) so the user can read them easily and re-
spond quickly.

However, making menus brief could mean that there will be more of
them, and too many short ones in a seemingly endless chain are as
irritating as a few very complicated ones. By thinking of the user as a
valued customer who you want to keep on the right side of, you can
usually devise some means of turning aside his wrath. Pleasantries
and a bit of decoration might help, but when all else fails at least be
polite.

Frills

A simple style can stay simple or you can embellish it with borders if
you wish. Additionally sections can be boxed off by using the ‘graph-
ics’ indicated with their ASCII codes on page 116 [551] of the
manual, though so many are required that I tend to adopt the simplest
presentation I can get away with.

However, if you find these goodies really appealing, you can write a
string for a top line (with two downward pointing corners) and one
for a bottom line (with two upward pointing corners), and print these
when required, together with the interconnecting vertical edging of
course. The verticals are the real problem. Each pair of ‘left edge’

124 PCW Super Code

and ‘right edge’ ought to be included as the first and last character of
a text line, but this means that each text line will be longer and that
every screen line will need to be printed, so printing is slower. If you
try to print them repetitively on their own by using a print instruction
in a loop, you will find that they take ages to appear because CP/M
has to work out the two print positions at each pass of the loop.

The problems of speed are all solved by the Customised Printing
techniques described in Chapter 8, but you still need to put the
graphics data into a data table, which is laborious. Professional soft-
ware houses pay a lot of attention to presentation and if your work is
for sale then OK, but if it is for you and your mates I would check to
see if they care before going too fancy.

Tyvpes of Menu

There are essentially three ways of making menu choices and the
menu will need to be designed to suit the method being used. The
methods are:

1. Selection by key-press
2. Selection by cursor
3. Selection by text cancellation

1. Keypress

In the first type, the text describing each option is accompanied by a
letter or a number indicating which key(s) to press to activate that op-
tion. In some cases it may be necessary to press the key and then to
confirm it by pressing ‘RETURN’ as well; this second variant is
called buffered key selection. When more than one key has to be
pressed (as in a multi-digit number input, or typing a whole word),
buffered keying can hardly be avoided.

2. Cursor

In the second type the text of the options are listed in the usual way
but an option is chosen by moving a cursor next to it and by then
pressing ‘RETURN’, or some other key indicating acceptance. A
more impressive variant is for the ‘cursor’ to be a bar of inverse video
that illuminates the whole of each option-text as it is moved between
the choices.

Chapter 10 1 25

Whatever kind of cursor is used, it is usual to move it (either side-
ways, or, more usually, up and down) by using the four direction
arrow keys in the numeral pad, though any of the alphanumeric keys
can be made to perform this function as well. A still more profes-
sional touch is created if the cursor automatically jumps back to the
start of the list when it has transitted all the choices, and this can be a
distinct aid to users when the list is long.

3. Cancellation

This less common approach offers each option singly in turn. When
the ‘reject’ key is pressed (I like to use the space-bar for this) the old
option is erased and a replacement is displayed in place of it. If the
‘accept’ key is pressed then the program acts on the option being dis-
played.

Although not often used, this method may be the only practical solu-
tion if each option is very complicated and needs a lot of text for its de-
scription. It also finds use in such fields as teaching, in personality or
intelligence assessment, and in adventure games, where there may be
reasons for not disclosing the full range of choices. It is also useful
when most of the screen is occupied by some kind of document or a
diagram leaving only the status line (the lowest line) on which to dis-
play the options one at a time. Whatever variant is used, it is impor-
tant to provide for the situation in which the user has rejected all the
offered options. If you don’t he and the monitor may be left staring
blankly at each other, though the monitor will be the one with more
patience.

The next two chapters deal in more detail with key-press and cursor
menus.

ASCIT 13

Note that both ‘RETURN’ and ‘ENTER’ have an ASCII code of ‘13,
so when I refer to either of them I am implying either one.

126 PCW Super Code

Chapter 11
Key-press Menus

NON-BUFFERED SELECTION

Non-buffered keying means that the program responds as soon as an
authorised key is pressed. For single key inputs it is much to be
preferred to buffered keying. Suppose that keys J’, ‘K, and ‘X’ are
authorised responses, but no others are to be accepted. A listing to
await a keypress and then accept only these is illustrated on the next

page.

The sequence awaits a keypress by calling BDOS function No 1. If
none is received then nothing will happen, but if a key is pressed the
function puts the relevant ASCII code into the A register and the
program is allowed to continue. The received ASCII is then com-
pared with the ASCII of “J”, and if the two are the same a jump is
made to ‘program 1’ by the ‘jpz PROG_1" instruction. If the two are
not the same then there is no jump and the next comparison is made,
this time with the ASCII of ‘K’. If this comparison matches, a jump
will be made to ‘program 2’, etc. This sequence of comparison and
‘jump-if-zero’ can be extended as long as you like, though the ex-
ample shows only three such tests because there are only three al-
lowed keypresses.

Chapter 11 1 27

Loop:
ldc1 14 1 Await a
call BDOS 205 5 0 keypress
cp T 254 74 Compare to ASCII of ']’
jpz PROG_1 202 P1 P1 & jump if they match.
cp 'K 254 75 Compare to ASCII of 'K’
jpz PROG_2 202 P2 P2 & jump if they match.
cp X 254 120 Compr to ASCII of 'x’
jpz PROG_3 202 P3 P3 & jump if they match.
jr loop (-22) 24 234 No match so go for another key

When the sub-r has tested the ASCII in A against all the allowed val-
ues and no match has been found it meets the ‘jr loop” instruction.
This forces a return to the beginning of the sub-r (to the place marked
by the label ‘Loop’) so fnc 1 is called again and another keypress is
awaited.

Note that function No 1 will automatically echo the pressed key onto
the screen if it is printable. The character will appear at the current
print position whatever that happens to be, and this is reason enough
for moving the cursor to the bottom of the screen as suggested below;
this gives the echoed characters their own little patch of screen so they
don’t get tacked onto the menu text. The echoing has the advantage of
telling the user what his keypress actually was (as opposed to what he
thought it was), but if you prefer to avoid it then print ‘backspace’
and ‘space’ (8 and 32) just before the ‘jr loop’ instruction.

Our natural agressive programming instinct is to insert a ‘beep’ on
detection of a wrong key (ie. immediately before the ‘jr loop’), its im-
plication being that anyone who can’t tell one key from another is a
prat who needs to be pulled up short. I press wrong keys all the time
and I'm not a prot (stet), and neither, Iimagine, are you. If you feel
that comment is unavoidable, think of something kinder than a beep
(a gentle warble maybe?).

Text for single-key Menus

A key-press menu is almost always written as a single string that will
alone occupy the screen, and it is almost always displayed by using
BDOS function No 9 (“Print string”).

128 PCW Super Code

The following menu-page string illustrates the main features required
in a style I quite like. Although written onto separate lines for easier
analysis, it would occupy a continuous area of memory starting at
some suitable address that we will call ‘MENU'.

27 69 Clear the screen.
27 89 40 64 Start at Line 8, Colm 32.
27 114 Start underline.

36 363277657378 “** MAIN MENU **”
3277 6978 8532 36 36

27 117 End underline.

27 89 43 60 Print at Line 11, Colm 28.
27 112 Start inverse video.

32 97 32 “ar

27 113 End inverse video.

32 32 2 spaces.

70 105 114 115 116 32 “First choice”
99 104 111 105 99 101

27 89 45 60 Print at Line 13, Colm 28.
27 112 Start inverse video.

32 98 32 “b”

27 113 End inverse video.

32 32 2 spaces.

83 101 99 111 110 100 “Second choice”
99 104 111 105 99 101

27 89 58 60 Move cursor to low screen.
36 String-end marker.

The screen print positions can of course be varied to suit your require-
ments, but remember that the ‘print at’ escape sequence requires 32
to be added to both the line and the column numbers. The following
listing would be suitable for displaying the menu.

Id de, MENU 17 M M Address into DE,

lde, 9 14 9 and call the

call BDOS 205 50 print function.
continue . . .

If you compile and display it, you will see that it is actually part of a
menu showing only two options, but more can be added by repeating
the same general pattern as often as required.

Chapter 11 1 29

Choice of keys

In my example, to the left of each option there is a block of inverse
video showing the key to be pressed to activate it. This menu uses
letter-keys. Number-keys are an alternative, but they allow at most
10 options whereas letters allow up to 52 because upper and lower
case have different ASCII codes, though you could hardly display all
52 on screen at the same time. The real attraction of letters is that you
can use the initials of the option and these are more easily remem-
bered; you might use ‘s’ for ‘save’ or ‘supplier , ‘¢’ for ‘calculate’
or ‘customer or ‘credit note’, etc. Equally you could use ‘S’ for
‘save’ and distinquish it from ‘s’ for ‘supplier, or whatever.

Upper or Lower ?

On the subject of upper versus lower case, you may wish to prevent
distiction between the two (so that an input of either “n” or “N”
stands for ‘no’, for example). This can be arranged by following the
call of fnc 1 with an instruction to set bit No 5 of A to ensure that A
then contains the ASCII of a lower case letter. (The ASCII of a lower
case letter is always 32 more than the ASCII of its upper case.) Then,
in the testing that comes later, you would need to test for only lower
case not for both lower and upper. Alternatively, you could reset bit
No 5 to ensure that A then always contains an upper case letter.
Either way, the subsequent comparisons would all be in the case you
selected, and the program sequence (for lower case) would start:

Loop:
lda,1 62 1
call BDOS 205 5 0
set5a 203 239 Convert to lower case

continue . . .

The cursor position

To make the inverse video blocks distinguishable, it is necessary to
leave a blank line between options, and unless the normal screen cur-
sor is disposed of it messes up the appearance of the last line. Moving
it down to the bottom of the screen is an easy solution, and this is de-
sirable anyway (see above); but alternatively you can use the “Dis-
able cursor blob” escape code, whichis 27 102, but then you must re-
member to enable it (27 101) when the menu bas been used.

130 PCW Super Code

If you make a point of using ‘disable’ anywhere in a program, itisa
good idea to attach ‘enable’ at the beginning of all other types of
string; if the blob is already enabled then enabling it a second time
will do no harm, and this way it doesn’t get forgotten (once you have
become used to a cursor blob, trying to input text without one can be
quite unnerving!).

BUFFERED SELECTION

With buffered selection the user makes one or more keystrokes that
will be recorded but otherwise ignored until he presses an ‘OK’ key.
The OK is usually indicated by ‘RETURN’. This allows the user to
check his input before committing himself to it, but it is principally a
way of inputting whole words or other character combinations that
may be authorised by the programming. You can, of course use
buffered selection for single key inputs, but I can’t see any point in it
unless, for some reason, it is vital not to hit the wrong key in which
case the method gives the user extra time to check his input before
pressing the ‘accept’ key. It may also be the case that you have used
buffered keying elswhere in the program (for some multiple character
input, say) in which case you may use it also for single character
input, just to be consistent.

Buffered keying arranges to store the input somewhere, and when it
getsa ‘13’ it examines the stored material to see if it is listed amongst
its authorised sequences. If all the authorised sequences are known to
be of the same length, it also usually rejects inputs that are too long or
too short without bothering to scrutinise them.

Function 10

This arrangement is easily provided by Fnct No 10 (“Read Console
Buffer”) which

a) stores the input in the buffer that has been declared
for it.

b) refuses to accept more characters than the buffer is
authorised to accept (thus preventing a ‘too long’
input).

c) counts the characters that have been typed in
(thus making it possible to check for a “too short’ entry).

Chapter 11 131

Suppose our program requires the user to key in a 5-character code
that it will compare with a list of authorised codes. This might be the
case if the user were being asked to type in his ID (identity) code
before being allowed to access sensitive information, or if an account-
ant were asking for the display of records of the particular client who
is identified by the code.

Setting up the Buffer

First the console buffer is established by inserting ‘5" (the allowed
maximum number of characters in this case) in its first address, load-
ing DE with the address, and then calling the function. The function
will await the input and also simultaneously insert into the buffer and
echo onto the screen. It will also sound a beep if more than 5 charac-
ters are typed and refuse to accept more. The user signifies that his
input is complete by pressing ‘RETURN'.

If, asIsuggested, ‘5’ is stated as the maximum buffer size, then there
will be no opportunity to input too many characters, and this can be a
disadvantage in security situations where you should avoid giving any
clues as to what is authorised practice. Instead declare the buffer size
to be something higher that the true number, 10 say, so he has the op-
portunity to type in too many and be disqualified.

Character count

Following the establishment of the buffer, the user will type in his
text, and terminate with ‘RETURN’. We then test the count in the
second buffer address to see if 5 characters have actually been typed
in (CP/M will not include the ‘RETURN’ key in the count).

A program example

Suppose that the screen is to request a code input by displaying the
query:

“Which code ?”

Assuming that the rest of the screen has been prepared as necessary,
this prompt will be available as a string such as

132 PCW Super Code

27 89 40 60 Print posn for query.
87 104 105 99 104 32 Text.
99 111 100 101 63

2775 Erase rest of line.
27 894076 Print posn for reply.
36 End-marker.

Suppose also that our buffer is to start at the address ‘BUFF. The
process of printing the query string, establishing the buffer, and
checking the count could be achieved by the following listing.

Loop:
ldde, QUERY 17 Q Q Print
ldc, PR_.STR 14 9 the
call BDOS 205 5 0 query.
Id hl, BUFF 33 B B Address in HL, and
Id (hl), 5 54 5 insert max num of chars.
ex hl, de 235 Address into DE,
ld ¢, C-BUFF 14 10 and call
call BDOS 205 5 0 the fnc.
Id a, (BUFF+1) 58 B+1 B Count into A, and
cpb 254 5 compare with 5.
jr nz Loop 32 232 If not 5 repeat.
continue . . .

This procedure points DE to the query-string and prints it. The buffer
is declared and filled. The count of characters is compared with 5. If
the count is not 5, the program jumps back to print the string again,
but if the count is 5 the program proceeds. This explains the presence
in the string of the escape sequence ‘27 75" if a repeat occurs this
deletes the previously printed input characters, and the print position
instruction that follows it re-establishes the screen location for the re-

vised reply.

Testing the ID code

The program will have in memory a list of the authorised 5-letter
codes, though each entry will in fact be more than 5-bytes long if it
also contains a reference number (such as a folio number) or other
data that the program will find it useful to extract when a correct entry
has been located. In this case assume that the reference number is the

Chapter 11 1 33

single byte that follows the code, so that each list entry is 6 bytes
long. Suppose also that the list starts at the address ‘LIST, and that
an entry of all zeroes indicates that the end of the list has been reached.
This pattern would be obtained if the whole list were zeroised before
any entries were put into it. Call the address of the start of the console
buffer text “TXT" (so TXT = BUFF+2).

The intention is that the sub-r will return with the carry flag set and
zero in A if the code is not found, but it will return with Cy reset
and the relevant code number in A if it is found. A possible listing to
follow on from the earlier one that prepared the console buffer might
be:

FOLIO
Id hl, List-6 33 L6 L 6 addrs before list start
Ld de, Text 7 T T Start of text
Next
Idd bc, 6 1 6 0 Next list entry
add hl, bc 9
ld a, (hl) 126 If it is
ora 183 zero then
scf 55 set Cy and exit
ret z 200 because list has been exhausted
push de 213 Save the
push hl 229 the two addresses
lda,5 62 5 Count of 5
call COMPARE 205 C C Comp text & list entry (page 163)
pop hl 225
pop de 209
jr ¢ Next 56 237 Not same so go for next
Id de,5 17 65 0 Point to
add hl, de 25 Folio number
Id a, (hl) 126 Extract it into A
or a 183 Reset Cy

ret 201 And finish

134 PCW Super Code

Chapter 12

Cursor Menus

There are two main approaches to creating a cursor; you can either
display a ‘pointer’ beside the text, or you can convert each section of
text in turn into reverse video. Both approaches can be achieved by a
print operation or by the more flexible method of manipulating the
screen data.

Printed cursors

The simplest of all pointers is a custom made cursor rectangle gener-
ated by subjecting a screen print-position to inverse video. To do this
we first need a cursor-string made up as follows:

27 102 Disable the cursor blob
27 89 A X Print at
27 113 Inverse video off
32 Space
/% ...27 89 B X Print at
27 112 Inverse video on
32 Space (the Moving Cursor)
27 113 Inverse video off CL¥/
27 89 C X Print at
27 113 Inverse video off
82 Space

36 End-marker

Chapter 12 1 35

As an alternative to a simple rectangle you can use other symbols such
as those given by ASCII codes 62 or 252 (assuming the cursor is on
the left of the text). Alternatively you can design a pointer of your
own as described in PCW Machine Code Chapter 9, and in Chapter 9
in this book. Whichever you use, it should replace the middle ‘32" in
the string.

The value of ‘X’ is the number of the column (+32) in which the
cursor is to appear. You choose that to suit yourself, but note that
there are three places in which the same value of ‘X’ must be inserted.

When printed, the string first disables the usual flashing cursor so that
it doesn’t interfere with the display (but remember to turn it on again
later). For the moment ignore the rest of the string except for the sec-
tion between the two markers /#*..%/ , which contains the ‘SPACE’
that will act as the new moving cursor and the escape sequences that
position it and convert it to inverse video and then switch back to
normal. The line on which it appears will be determined by the value
of ‘B’. If you want to start it on the 9th line down, you will give ‘B’
a value of 40, etc.

We now wait for an up or down arrow to be pressed. If a down arrow
is detected we add one to ‘B’ and print the string again, thus printing
the cursor on the line below. If we detect an up arrow, we subtract one
from ‘B’ and print again, this time making it appear on the line
above.

Unfortunately, if we do nothing else we will then have two cursors
one above the other, but the first and last parts of the string are de-
signed to get rid of the one we don’t want. If we make sure that ‘A’ is
always one less than ‘B’, and that ‘C’ is always one more than ‘B,
then the unwanted cursor will always be overprinted by a blank when
the new one appears on the line above or below. Thus on detection of
a down arrow ‘A’, ‘B’, and ‘C’ should all be incremented, and on
detection of an up arrow they should be decremented.

If you want the cursor to jump two lines at a time then ‘A’ should be
two less than ‘B’, and ‘C’ should be two more than ‘B’, and the
values should all be increased or decreased by two at each movement.

You should also test the value in ‘B’ so that up arrows are ignored if
the cursor is too high up the screen, and so that down arrows are ig-

nored if it is too low.

Bearing in mind that the arrow keys have ASClIs of ‘31" for up and

136 PCW Super Code

‘30" for down, the following listing would control the cursor if the
string is located at Addr and the cursor is to move one line at a time:

CURSC
ldde,Addr 17 N N Print
lde, 9 14 9 the
call BDOS 205 5 0 string

Awai:t
lde, 6 14 6 Await
lde, 255 30 255 a keypress
call BDOS 205 5 0 (no echo)
cp 13 254 13 If ‘'RETURN’ or
ret z 200 ‘ENTER’ pressed then finish
ld hl Addr+20 33 N N
Idc, (hl) 78 ‘C’into C
cp 30 254 30 Down arrow ?
jrnz3 32 3 if not then jump on
incc 12 * Else increment ‘C’
jr.5 24 5 and jump on
cp 31 254 31 Up arrow ?
jr nz Await 32 231 if not then get next key
dec ¢ 13 * Else decrement ‘'C’
Id (hD),c 113 New ‘C’ into string
dec c 13 New ‘B into C
ldhl, Addr+11 33 N N and into
Id (hl), c 113 string
dec c 13 New ‘A’ into C
Id hl, Addr+4 33 N N and into
ld (hl),c 113 string
jr Start -47 24 209 Go to start

The sub-r starts by printing the string and then awaits a key-press with
fnc No 6, which is preferable to fnc No 1 in this case because it
records the pressed key in A without echoing it on the screen. To use
it in this way, E is first loaded with 255.

The value in A is then compared with ‘13’. If itis 13 then the sub-r
terminates because this indicates that the user has pressed ‘RETURN’
to show acceptance of a particular menu item. The identity of the item

Chapter 12 137

accepted can be found by testing the value of ‘B’ (the line number of
the cursor) which is at Addr+11 in the cursor string.

Then the value of ‘C’ is stored in the C register ready for increment-
ing or decrementing.

The value of the pressed key is now compared with ‘30" (down). If it
isn't 30 then a jump is made over the next three bytes, but if it is 30
then the value in C is incremented and a jump made to the insertion
into the string of the revised value. If it wasn’t 30 then it is tested
against ‘31" (up). Failure of this test gives a jump back to await an-
other key-press. If it was 31 then the value in C is decremented.
These tests have therefore eliminated incorrect key-presses and ad-
justed the value in C to accord with a correct one.

The adjusted value in C (which is the new ‘C’) is put back into the
string. We know that ‘B’ is one less than ‘C’, and that ‘A’ is one less
than ‘B’, so the the value in C is decremented to obtain their values
and these are also put back into the string.

A jump is then made to the start of the program to reprint the string
and await the next key-press.

If you wish to insert extra code to control the range of movement of
the cursor it should be put in at the places marked by the asterisks
“%”. In doing this, bear in mind that the sub-r needs the value in A
(the code of the pressed key) so this will have to be ‘pushed’ and
later ‘popped’ (or briefly moved into another register) if you use the
A register for testing the line value of the cursor.

Inverse video by printing

To move a bar of inverse video up and down through the text lines of a
menu, the text needs to be provided with the proper escape-sequences
for each line. The following example gives the idea:

13 27 89 42 62 27 113 “First line of text” 27 113
1327 89 43 62 27 112 “Second line ...” 27 113
1327 89 44 62 27 113 “Third line” 27 113
ais e BEC

As shown, the second line will be printed in inverse and the others in
normal video. To move the inverse it is necessary to change the ‘112

138 PCW Super Code

to ‘113’ so that the second line will then print in normal mode, whilst
setting the inverse in the line above or below, depending on which
arrow key is pressed. To achieve this it is necessary to keep a record of
the addresses of the bytes that may need to be changed, or this can be
done by simple calculation if the line lengths are all the same. In either
case it is essential to limit the ‘range of travel’ or the inverse instruc-
tion will be inserted outside the string and the code on each side of it
will become corrupted. After each change the string has to be re-
printed. Identification of which text option the user chose is most
easily achieved by an independent count (in a spare address) that is
incremented by down arrows and decremented by up arrows.

Cursors by screen data manipulation

It is much more convenient to produce reversed video cursors by ma-
nipulating the screen data, and the technique can be used to make
either simple pointers or inversed text lines. As well as being easier to
use, the technique operates more quickly because there is no require-
ment to keep reprinting the menu text. It uses the screen routines
developed at the end of Chapter 8, plus the one listed below, called
‘REVBAR’, which actually makes the reversed video bar. REVBAR
must be in common memory. My address for it is (114,192), which is
what I will use in all references to it.

On entry to it, the following information should be in the specified
registers or in the screen variables area:

E reg or (6,192) Line number (0 to 31)
Dreg or (7,192) Start column number (0 to 89)
Areg or (8,192) Number of columns (1 to 90)

Data outside the limits is rejected with Cy set, otherwise Cy is reset.
There are two start addresses. The first is used if the data is in the
registers, or the second if it is already in the variables area.

REVBAR
Start1: Address (114,192)
Id (6,192), de 237 83 6 192 Put data into variables

1d(7,192,) a 58 8 192 if not already in

Start2: Address (121,192)
Id bc, PROG 1 X X Point BC to program
jp HANDL 195 20 192 as required by HANDL

continued on next page . . .

Chapter 12 1 39

Program: Address (X,X) = (127,192)
call FADDR 205 35 192 Screen address to HL

ret ¢ 216 Finish if error
ex hl, de 235 Then into DE
call BLEN 205 94 192 Bytes to HL
ldb, h 68 Then into
lde, 1 77 BC

Loop:
Id hl, 47 179 33 47 179 Last screen address
Id a, (de) 26 Extract a byte
cpl 47 reverse it
Id (de), a 18 and replace
inc de 19 Point to next
ora 183 If beyond
sbc hl de 237 82 end of screen
ret ¢ 216 then finish
dec bc 11 Decrement count
Ida,b 120 of bytes
orc 177 and loop if
jr nz Loop 32 240 not zero
ret 201 Else finish

Note that REVBAR reverses in either direction so a bar already re-
versed is restored to normal by it. When using it to produce menu
cursors, call it, then change the line number in the variables before
calling it again. This un-reverses the previous line and reverses the
new one.

Cursor scanning

In this case it is easy to keep the cursor within bounds, and to send it
to the other end of its travel if it attempts to exceed its range. Hence in
the following example if the user has scanned all the options down-
wards and presses the down arrow again, the cursor is flipped to the
top of the menu by replacing the value in (6,192) with the upper line
number. The same technique is used to flip it downwards from the
top. My version is at (2,194), so I will use that address when refer-
ring to it. The data required in the feed is:

E reg Top line of menu (0 to 30)
D reg Left Colm of cursor (0 to 88)
L reg Cursor width (1 to 90)

H reg Bottom line of menu (1 to 31)

140

CSCAN

Id (0 192), de
Id (6 192), de
Id (8 192), hl

Loop:

call REVBAR 2

Await:

Exit:

lde, 1

call BDOS
cp RETURN
ret z

cp EXIT
jrnz2

scf

ret

Down:

Up

cp DOWN
jrnz Up
call REVBAR 2
ldhl, 9192
lda,(6192)
cp (hl)
jrnz8

Ida (0192)
1d (6192),a
jr Loop
inca

1d (6 192) a
jr Loop

cp UpP

jr nz Await
call REVBAR2
Id hl, 0192
lda, (6 192)
cp (hl)

jrnz 8
lda,(9192)
Id (6 192), a
jr Loop
deca

Id (6192),a
jr Loop

Address (2,194)

237 83 0 192
237 83 6 192
34 8 192

205 121 192

14 1

206 5 0
254 13
200

254 27
32 2
55

201

254 30

32 26

205 121 192
33 9 192
58 6 192
190

32 8

58 0 192

50 6 192
24 215

60
50
24

6 192
209

254 31

32 208

205 121 192
33 0 192
58 6 192
190

32 8

58 9 192
50 6 192
24 185

61
50
24

6 192
248

PCW Super Code

Await a
key

Finish if it is
‘RETURN’

If ‘EXIT’

set Cy
and finish

If not a down arrow
jump to Up
Else cancel the cursor
Point to bottom line
This line number
If not the same
jump on
Else put the top line
number into this line
number and repeat
Not same so
move down
And repeat

If not an up arrow
get another key
Cancel the cursor
Point to top line
This line number
If not the same
then jump on
Else put bottom line
number into this line
number also and repeat
Not the same so
move up
And repeat

Chapter 12 1 41

The program starts by making a cursor bar on the top line of the menu.
This line number is stored at both (0,192) and (6,192). As the cursor
is moved, the value at (6,192) is changed but the one at (0,192) is
kept as a reference. The bottom line (the lowest allowed position) is
stored at (9,192). It then awaits key-press. If thisis ‘13’ then an exit
is made with Cy reset. Ifitis 27" (EXIT) then a return is made with
Cy set. Testing Cy indicates whether the user has completed his use
of the cursor or merely selected a cursor position. If the key is ‘30" the
procedure for moving the cursor down is followed. If itis ‘31’, the up
procedure is used. No other key has any effect.

Other uses of cursors

Making cursors by screen data manipulation has even more interesting
applications. Menus with more than one column of choices can easily
be accommodated (as is done in the main disc-manager for Locoscript
documents), even if the columns have different text widths or start in
different screen positions. It is also possible to inverse words within a
normal text item (as opposed to in a list) to draw the users attention
to them for a ‘yes/no’ reply.

Because printed cursors obliterate anything underneath them they
can’t be superimposed on existing text, but screen data cursors can be
put anywhere without affecting existing material.

142 PCW Super Code

Chapter 13

Loading Screens

What you see is whatever you like

This chapter describes various methods of transferring pictures or pat-
terns to the screen and then animating them. A common use of these
techniques is in making loading screens; diverting displays to be
shown during the time that large chunks of data or long programs are
being sucked into the machine from disc. No conceivable arrangement
of dots of light can be ruled out as a candidate for performing this
service, but whatever they look like they are all aimed at keeping the
comsumer re-assured and impressed whilst something unavoidably
boring is happening. Not all of them succeed (though I'm sure yours
will) and a point to bear in mind on the design side is that the same
display will (presumably) always be shown, and whilst it may be di-
verting on the first occasion, after a dozen showings the novelty will
have worn off so there is something to be said for a gentle, low key,
approach that doesn’t grate on the nerves after the nth display.

In addition to the methods described below, text can be brought to the
screen in visually interesting ways by some of the customised printing
techniques described in Chapter 8. As with all programs involving
block switching, the ones in this chapter need to be in common mem-
ory.

Chapter 13 1 43

Screen data

The record of which screen pixels are ‘on’ and which are ‘off is kept
in blocks 1 and 2 between addresses (48,89) and (47,179). Any
changes made to the bits stored between these addresses will instantly
appear as a change to the screen display. Try this for example, it clears
the screen by turning it white:

WCLS Address (WW)

Ida,8 62 8 Screen
out (a), 248 211 248 off
Id bc, SUBR1 151 81 Point to sub-r
call USERF 205 90 252 Call
DEFW 233 0 Screen Run Routine
lda,7 62 7 Screen
out (a), 248 211 248 on
ret 201 And finish
Address (51,51)
ld kl Scrn 33 48 89 Start of screen data
Id (1), 255 % 54 255 Prime with a 255
Id de Scrn+1 17 49 89 Next byte
Id bc Count 1 255 89 Screen bytes minus 1
Idir 237 176 Run through
ret 201 and finish

The routine points BC to the Sub-rat (S1,51) and then invokes the
Screen Run Routine. The sub-r fills each screen byte with a 255, thus
turning it white. The starting and finishing ‘out’ instructions are a tip
that I obtained from Geoffrey Childs’ book Streamlined Basic; the
effect of them is to switch the screen off (A = 8) before the clearance
starts, and then back on again when it is complete (A = 7). Without
these the clearance almost always looks a bit ragged because it is
obliged to take place in two parts, the size of the parts depending on
the state of Roller-Ram. With them in place it flicks off and on again in
the new state almost instantaneously.

You can get variations by changing what (HL) is loaded with at (%).
If with ‘0" then the screen will be cleared to black, ‘85" will produce a
‘grey’ clearance, etc. The numbers 0, 85, and 255 all represent sym-
metrical arrangements of pixels and so the display they produce is
‘homogeneous’. Most other numbers produce various sorts of vertical
banding because the set pixels of one line corresponded to the set pix-
els of the one above and below, but you can produce pleasant ‘hatch-

144 PCW Super Code

ing’ by filling a pixel line with one number and the one below by a
compensating number. Among the good pairs are 102 and 153, 136
and 34, and others. A good trio to use in this way is 36, 73, and 146.
Rotating a number before filling the next pixel line can produce attrac-
tive diagonal bandings, but use the cyclical 8-bit rotations such as
‘rle a’. Using two such rotations between pixel lines produces bands
inclined at 45 degrees to the edges of the screen.

Does CP/M have a loading screen?

I'm not sure if the bars of black on white that appear when you insert
your CP/M disc actually rate as'a ‘loading screen’, but, whilst they
may not be the last word in graphic art, they do have the merit of en-
couraging you to think that an anticipated event is about to occur, and
in my book that is at least half the point of using them.

Just to prove that it can be done without a lot of hassle, the following
routine mimics the CP/M bars exactly.

SBARS

Id bc, SUBR2 1 82 82 Point to next Sub-r

call USERF 205 90 252 Call the

DEFW 233 0 Screen Run Routine
Address (S52,52)

Id hl, Roller 33 0 182 Start of Roller-RAM
Loop:

Id e, (hl) 94 Half 1st screen

inc hl 35 addr

ldd, (h) 86 into DE

ex hl, de 235 Swop the two

add hl, hl 41 Get actual screen address

Id a, (hl) 126 and test the screen

ora 183 byte. If it is not zero

jr nz Bar 32 14 jump on to zeroise it

inc hl 35 Else

inc hl 35 move

inc hl 35 4 pixel lines

inc hl 35 down the screen

Id a, (hl) 126 And

ora 183 repeat

jr nz Bar 32 6 the test

continued on next page . . .

Chapter 13 1 45

ld hl, 15 33 15 0 Byte was zero in both cases so
add hl, de 25 point to Roller addr of next
Jr Loop 24 233 pixel line and repeat.
Bar:
id b, 50 6 90 90 bytes per line
Loop2:
Id (hl), 0 54 0 Zeroise a pair
inc hl 35 one above
‘Id (nl), 0 54 0 the other
ldde,7 17 7 0 Then move to each
add hl, de 25 adjacent print position
djnz Loop2 16 245 until line complete.
ret 201 Finish

Before using ‘SBARS’, the screen must be reversed as by using
‘WCLS’ described above, or by some other method. Each time
‘SBARS’ is called it adds another black line to the screen, so you can
then use it as CP/M does - during the loading of a program - by
calling it each time the DMA address is increased prior to looping
back for the next record (see PCW Machine Code, page 114, and page
147+ below). The program puts 2 horizontal bars into each print line
so the screen can hold only 64 bars. If your file is more than 64
records long then you will need to invoke ‘SBARS’ every two or three
records or you will overwrite the Roller-Ram. Invoking it for every
record is in any case a bit fast.

If you just want to see the effect you can repeatedly call ‘SBARS’ from
a simple await-key loop, but exit the loop before the screen fills up.

PRE-COMPOSED SCREENS

Mauch more visually interesting effects can be obtained from storing
one or more alternative ‘screens’ in memory, and quickly inserting
one in place of the one we wish to dispense with. Because of the
amount of data involved it is clear that the only practical storage place
for them is in the ‘Memory Disc’, ie. in blocks Nos 9 and above. So
the screen ‘insertion’ would consist of transferring the data from a
pair of storage memory blocks into blocks 1 and 2.

Two blocks are needed because there are 90 pages of screen data and
2 of Roller-Ram, plus some intervening bytes, (see opposite) making
a2 total of nearly 95 pages in all (24,272 bytes in fact), whereas a
single block can hold only 64 pages.

146

The quickest and simplest approach
to transferring data from one block
to another is to use the block switch-
ing technique described in Appen-
dix 4 (which is reproduced from
PCW Machine Code). It is important
with this technique not to get the
blocks tangled up, though keeping
them straight is not difficult.

Storing screen data in memory

First construct your screen. If it is to
be text then it can be assembled in
any of the usual ways. Ifitis tobea
picture or a geometric pattern, then
you will presumably use a piece of
graphics software, with which the
use of a light pen makes the task
comparatively easy

Once the screen has been prepared,
it can be stored by a routine such as
the one following. The storage area
chosen in this case is blocks 9 & 10,
though any pair of blocks would do.
(See “Choosing blocks” below).
First block 10 is connected to port
240 [address range (0,64) to
(255,127) 1 and the latter’s data is
transferred to the former. This par-
ticular pattern of attaching the
blocks to ports is not significant. As
long as the two are in circuit to-
gether it wouldn’t matter where
they were, though naturally you
mustn't disturb block 7 in the top
address range.

PCW Super Code

BRE By

(47,179)

Block 2
Screen

Data

Block 1
(48,89)
0.04) @ o o e e,
55,63)
Block 0

|

Contents of the
Screen Environment

It is necessary to disable the interrupts to ensure trouble-free block
switching, and the time interval between disabling and enabling them
again should be kept as short as is reasonably possible. It is also
necesary to put block 0 back in place so that it is immediately avail-

Chapter 13 1 47

able when it is wanted. It is not necessary to do anything additional
to restore port 241 because the restoration of the TPA handles this by
putting the usual block 5 into it.

STORE
di 243 Disable interrupts
lda, 10 62 138 Connect block 10
out (240), a 211 240
lda, 2 62 130 Connect block 2
out (241),a 211 241
Idhl, 2 % 33 0 56 Copy the block

ldde, 100 % 17 0 0
Id be, Count 1 0 64

Idir 237 176

lda'9’ 62 137 Connect block 9
out (240), a 211 240

lda, 1 62 129 Connect block 1
out (241), a 211 241

ldnl, 1 * 33 0 89 Copy the block

Id de, '9’ % 17 0 0
Id be, Count 1 208 38

Idir 237 176

lda, 0’ 62 128 Restore block 0
out (240), a 211 240

e 251 Restore interrupts
lda,1 62 1 Restore TPA

call MEM_M 205 33 253

ret 201 Finish

Re-establishing the screen

Fetching the stored screen for display is the reverse procedure. All the
'33s’ become ‘17s’, and vice versa (see the asterisks %). Note that it
is not a good idea to copy the whole of block 1 because when it was
copied back into memory it would restore an out-of-date disc directory
in its lower addresses.

Choosing blocks

If the ‘memory disc’ has been used, then its directory and the data in
it will start at block 9 and use progressively higher blocks to suit its
needs, so there is reason enough not to use the lower blocks for other

148 PCW Super Code

purposes unless you are sure this point can be ignored.

If you select a high block number (higher than 16) on the assumption
that your program is to be run in a ‘512" machine (they have 32
blocks) but later it is actually run in an ‘8256’ (they have only 16),
then the machine will automatically adjust the block number by sub-
tracting 16 to make it viable. This may be very convenient in some
cases, but it would produce a profound hiccup if your chosen block
number were between 16 and 24. The subtraction of 16 in these
cases would produce numbers between 0 and 8, and hence the
operating system would be overwritten.

Storing screen data on _disc

Access to the screen data can be obtained only through block switch-
ing or by using the Screen Run Routine, and both of these prevent file
handling because you can’t make system calls with the interrupts dis-
abled nor with the Screen Envirionment in place. In consequence the
data must be transferred first to Common Memory and be filed from
there.

Because there is no urgency about putting the screen data onto disc,
the simple approach is to transfer it in chunks into block 7 and then
disc it from there, though it is important to take care with the bounda-
ries of the chunks and to ensure that it comes back into memory in an
identical sequence. To help in this I like to pack it out to an exact
number of 128-byte records, and transfer it to block 7 in two equal
pieces.

As already stated, the quantity of data including Roller-Ram is
(208,94) bytes, so make this up to 96 pages and transfer in two lots of
48 pages. If you transfer each in turn into address (0,196) in block 7,
then they will probably not overwrite any programming you may
have in residence at the start of the block, and they will fit comforta-
bly under the CP/M and stack area that starts at about (0,246). So a
typical arrangement for copying onto disc might be:

Create File:
Id de, FCB 17 N N Delete any file of
Id ¢, Delete 14 19 the same name
call BDOS 205 5 0
ld de ,FCB 17 N N Create a new file
Id ¢, Create 14 22

call BDOS 205 5 0

Chapter 13

inca
jp z Error
continue . . .

ldb,2

Loop:

push bc

Id bc, SUBR9
call USERF
DEFW
lda,1

call MEM_M
jp File

Address (59,59)

ldhl, (A A)
push hl

Id be, Count
add hl, be

pop hl

Id de, Common
Idir

ret

60
202 E E

6 2
197

1 89 59
205 90 252
233 0

62 1

205 33 253
195 F F

2 A A
229

10 48

9

225

17 0 196
237 176
201

149

Test
for error

This makes sure you are not trying to make a second file of that name,
and creates a new one ready for the copying. Then follows:

Two copying
operations

Point to sub-r and
establish blocks 1 & 2 by
Screen Run Routine

Restore TPA

Goto 2nd part of prog

Get the start address
Save it
And add Count
ready for
next copy
Copy
to block 7
Return to Screen Run Routine

These operations establish the Screen Environment and copy the first
lot of bytes from the address stored at (A,A) into block 7, and the
address at (A,A) isincremented to the address for the second trans-
fer. The TPA is re-established and then follows the filing operation.

Address (EF)

Id de Screen 17 0 196 Start of screen data

ld b, 190 6 96 Count of records
Loop1:

push bc 197 Store count

push de 213 and address

Id ¢ SetDMA 14 26 Set DMA address

call BDOS 205 5 0

Id de FCB 17 N N Write

ld ¢, Sequ 14 21 128 bytes

continued on next page . . .

150 PCW Super Code

call BDOS 205 5 0 to file

ora 183 Test

jp nz Error 194 E E for error

pop de 209 Recover DMA

Id hl 128 33 128 0 address and

add hl, de 25 add 128

ex hl, de 235

pop be 193 Recover count of

djnz Loop1 16 228 records & repeat if not zero
pop be 193 Recover count of

djnz Loop 16 X operations & repeat if nz.

This returns to ‘Loop’ for copying the second batch, or closes the file
by: '

Id de, FCB 177 N N Close

Id c, Close 14 16

call BDOS 205 5 0

inca 60

jp z Error 202 E E Jump if Error
ret 201 Else finish

These operations cover the ‘straight’ copying of screen data onto disc,
so the bytes are stored in the order in which they occur in memory,
and naturally they would be recovered by a similar process in the
same sequence. A quite different approach to storage is described
under ‘Picture Building’ below.

Artificial screens

As well as saving screens that have been generated on the VDU
(which is buzz for ’screen’), you may sometimes want to create one
numerically, or in some other artificial way, and in cases where there
is no existing Roller-Ram it will be necessary to install an artificial
one. To have the desired effect it must occupy the memory location
that is (209,2) bytes above the top of the screen data because the
screen usually ends at (47,179) and the Roller-Ram usually starts at
(0,182). Additionally, the contents of the Ram must follow the rules:

1. Entries are in batches of eight 16-bit numbers, and within
a batch each entry is 1 more than the one before.

Chapter 13 151

2. The first member of each batch is half the address of the
start of the print line to which it refers.

3. The first entry of one of the batches must be half the
lowest address of screen data.

4. The first member of each batch is 360 (=720/2) larger than
the first member of the batch preceding.

In relation to rule 2, I have found that the entry referred to cannot
always be obtained by dividing the address by 2. The entry when
multiplied by 2 must equal the address, but if I am right then the
multiplication must have lead to overflow. Hence in the case of the
entry for the lowest byte of normal screen memory, the address is
(48,89), but the entry must be (152,172), not (15244). [Doubling
either of these gives (48,89) if you ignore the overflow in the first
case.] I should point out that there are those who say that this is
rubbish. They claim that a simple halving will do. Try it and see.

A simple sub-r to fill outa Roller-Ram for a standard screen could be:

RRAM
Id hl, Roller 33 0 182 Start of Roller-Ram
ldde, 152172 17 152 172 Half lowest screen address
ldb, 32 6 32 32 lines
Loop:)
ldc, 8 14 8 8 bytes per line
Loop2:
ld(nl), e 115 Address
inc hl 35 into
Id (hl), d 114 table
inc hl 35
inc de 19 Next address
dec ¢ 13 Decrement count of bytes
jr nz Loop2 32 248 Next byte
push hl 229
Id hi, 352 33 96 1 360-8
add hl, de 25 Content for next line
ex hl, de 235 Into DE
pop hl 225
djnz Loop 16 239 Goto next line
ret 201 Or finish
Port 245

For an alternative method of creating a Roller-Ram, see page 105.

152 PCW Super Code

Resetting Roller-Ram

All the quoted examples and the ones that follow in this chapter take it
for granted that Roller-Ram will be in an unpredictable condition at
the time that a screen is recorded. To cover all eventualities it is as well
to make this assumption, but you can significantly reduce the amount
of time that your programs spend on calculating addresses if you are
able to reset the Roller-Ram to a known state before the screen is
composed and recorded. This could be achieved by:

SRES
Ida,8 62 8 Screen off
out (a), 248 211 248
call RRAM 205 R R Reset Roller-Ram
Ide, 27 30 27 Cursor
lde, 2 14 2 to
call BDOS 205 5 0 top
lde 72 30 72 left
ldc,2 14 2
call BDOS 205 50
lda,7 62 7 Screen on
out (a), 248 211 248
continue . . .

You can now guarantee that the address of the top left byte is (48,89),
and that all the others follow in the predictable pattern (see Ap-
pendix 7).

ANIMATION

There are many ways of achieving movement or change in a screen
display and I will lump these all together under the rather grand title
of ‘animation’.

Picture building

The simplest type of change is the one given by the ‘CP/M loading
screen’ described earlier. This arranges for some kind of incremental
addition to the display as time passes. Instead of adding black lines
you could arrange to add new parts of the final picture so that it builds

153

Chapter 13

up slowly from either the top or the bottom of the screen, or from both
simultaneously. The additions can be either print lines, or pixel lines.
The latter give a smoother effect but take 8 times as many operations,
though that is no penalty if you are looking for a snazzy result.

A pixel line across the screen consists of 90 bytes, and a file record
holds 128, so the data for a pixel line can comfortably be accommo-
dated in a record, and records of program material and screen data
could be inter-leaved alternately in the file. Your file loading program
would then be constructed so that it directed alternate file records to
the screen and to memory storage. As there are 256 pixel lines, you
will have to adjust the inter-leaving rate if your file contains more or
less than 256 program records, which it usually will.

If there are not enough program records, then handle the surplus pixel
records as a batch at the end, but introduce pauses so that they appear
on the screen at the same rate as earlier. If there are too many program
records, then feed a few in at the start before the picture building be-
gins. This will in any case be necessary because some programming
has to be loaded before anything else can be achieved.

The following bare bones of a loading program indicate the loading
procedure. It assumes that the first and all odd numbered records are
program material, and that the second and all even numbered ones
are screen data. The count put into BC is the number of program
records (not the number of records in the file).

initialise with ‘Open’, etc . . .

continued on next page . . .

ld de, Addr 17 A A 1st addr for prog records

ld be, Count L & C Count of program records
Loop:

push bc 197 Store count

push de 213 and address

ldc, Set.DMA 14 26 Set the address for

call BDOS 206 5 0 this program record

ld de, FCB 17 P F Point to FCB

Id ¢, READ 14 20 Read this

call BDOS 205 5 0 program record

ora 183 If an error then

jp nz Error 194 E E goto error procedure

ld de, PixelStore 17 P P Set fixed address into

ldc, SetDMA 14 26 which pixel line

154 PCW Super Code

call BDOS 205 5 0 is to be read

ld c, READ 14 20 Read the

call BDOS 205 5 0 pixel line record

ora 183 If an error then

jp nz Error 194 E E goto error procedure

call LINE 206 L L Call the routine to deal
with the pixel information

pop de 209 Increment the

Id hl, 128 33 128 0 program DMA by 128

add hl, de 25

ex hl, de 235

pop be 193 Recover the record

dec bc 11 count and decrement it

lda,b 120

orc 177

jr nz Loop 16 205 Repeat if count not zero

finish with Close, etc . . . -

The program is all as usual except that in addition to reading a pro-
gram record at each pass, it reads a pixel line record as well, and then
calls ‘LINE’ to deal with this. In all cases the pixel record data is put
into the same 128 bytes in common memory so that LINE always
knows where to find it. LINE, which has a lot in common with
SBARS, lists as follows. This version assumes that the picture is being
imposed upon a black screen. If you intend to start from a white
screen, then change the zero at (%) to “255".

The procedure for saving a screen to disc would be identical except
that the information would flow in the opposite direction.

LINE
Id bc SUBR7 1 S§7 S7 Point to Sub-r
call USERF 205 90 252 and call the
DEFW 233 0 Screen Run Routine
Ida,1 62 1 Restore the
call MEM_M 205 33 253 TPA
ret 201 Return to Loading program

Address (57,57)
Id hl Roller 33 0 182 As in SBARS

Loop: Id e, (hl) 94

Chapter 13 1 55

inc hl 35
Idd, (hl) 86
ex hl, de 235
add hl, hl 41
ldb, 8 6 8
Loop2:
ld a, (hl) 126
cp 0 * 254 0
jr z Fill 40 9
inc hl 35
djnz Loop2 16 248
ld bl 15 33 18 0
add hl, de 25
jr Loop 24 235
Fill:
id b, 90 6 90 90 bytes per line
Id de Pixels 17 P P Point to pixel store
Loop3:
push bc 197 Save byte count
ld a, (de) 18 Copy a byte
Id (hl), a 119 to screen address
inc de 19 Next stored byte
Id bc 8 180 Add 8 to
add hl, be 9 screen address
pop bc 193 Recover count
djnz Loop3 16 245 and repeat if not zero
ret 201 Else return to the loading prog

The sub-routine always starts at the address of the top pixel line of the
screen and examines each first byte down the left edge to see if this is
the pixel line to fill. If the byte is zero and this is a black screen then it
is the one to fill, so you must arrange for every new pixel line to start
with a byte that is not zero. If the screen is to start from white, then
each first new byte must not be 255.

This fractionally restricts the make-up of the left edge of the picture,
but as in both cases there are 255 alternative bytes to choose from,
not even the most temperamental among us could claim that his artis-
tic intengrity was being encroached upon. And if you really must start
from a black screen and have a black left side to the picture, then
make each first new byte a ‘128, and each last new byte a ‘1". This
would produce a barely noticeable thread of light symmetrically down
both edges of the screen.

156

Random picture building

Instead of feeding all the new pixel lines in at the top of the screen, it
is possible to introduce them randomly, or in some complex pattern
that tantalisingly reveals parts of the picture out of normal sequence.

To achieve this, each 90 bytes of pixel line data should be preceded
by a line number when they are stored in their record. As there are
256 pixel lines, the single-byte numbers 0 to 255 will cover them all.
The sub-r ‘LINE’ must then be modified to read this byte and position

PCW Super Code

the pixel data accordingly. This would be achieved by:

LINE2

Id bc SUBR7
call USERF
DEFW

lda, 1

call MEM_M
ret

Address (58,58)

Fill:

Id a, (P,P)
and 248
ldl,a
ldh,0
add hl, hl
Id de Roller
add hl, de
ide, (hl)
inc hl
idd, (hl)
ex hl, de
add hl, hl
lda, (PP)
and 7
lde a
ldd, 0
add hl, de

Idb, 90
Id de Pixels+1

1 S8 S8
205 90 252
233 0

62 1

205 33 253
201

58 P P
230 248
111

95
22 0
25

6 90
17 P+1 P

Line number into A
8 xINT (A/8)
Result
into HL
and double it
Start of Roller-Ram
Point to print line entry
Extract half of address
of start of this
line

Double it
Extra
pixel lines
into
DE and
add to screen address

90 bytes per line
Point to pixel store

Chapter 13 1 57

Loop2:
push bc 197 Save count
Id a, (de) 18 Copy a byte
Id (hl), a 119 to screen address
inc de 19 Next stored byte
Id bc 8 180 Add 8 to
add hl, bc 9 screen address
pop bc 193 Recover count
djnz Loop2 16 245 and repeat if not zero
ret 201 Else return to the loading prog

The first task of the sub-r is to locate the relevant entry in Roller-Ram.
There are 8 pixel lines per print line and 16 bytes of Roller-Ram per
print line so the pixel line number is put into A and the result

8 x INT (A/8)

is obtained. This could be derived by dividing A by 8 and then
multiplying the integer result by 8, but it is more simply obtained by

and a, 248

which masks out the lowest three bits. This is then doubled to count
the bytes from the start of Roller-Ram (16 bytes for every 8 pixel
lines). When the entry for the start of the print line has been extracted
and doubled, the remainder produced by dividing A by 8 (obtained
from ‘and a, 7’) is added to it. HL now holds the address of the pixel
line.

Speckling

There are several ways to make your picture appear apparently
ramdomly at locations throughout the screen rather than progressively
from the top edge, but inevitably they all involve more programming.
Picture building by ‘speckling’ (the random appearance of its pixels
all over the screen), is a favourite one of these.

A lot of labour can be saved by making the speckling appear to be
random whilst actually making it quite orderly. Hence instead of
lighting up ten pixels on ten different lines in succession, light up ten
at widely spaced positions on the same pixel line at the same time,

158 PCW Super Code

and then move to ten on another line. Further effort will be saved by
introducing nearly all of the speckling in the centre of the screen first,
whilst moving gradually outwards to the edges.

A simple way of achieving the effect is to have two, three, or miore
versions of each pixel line. The first of these is only a sparse skeleton
of the true line, with subsequent versions as more and more complete
copies of it. The most sparsely filled ones are screened first and then,
when all of them have been screened, their more advanced versions
are gradually superimposed upon them. You can cut down on the
number of such lines by restricting the area covered by speckling to
only the centre of the screer;, and fill the rest of it in a more economical
way.

It is also possible to introduce bytes (or print-locations of 8 bytes)
rather than pixels in a speckled manner. This would be done by the
data table method described under ‘Table Printing’ in Chapter 8 (see
page 97). The table would contain 3-byte entries that defined the byte
and its required screen position. As there are 23,040 bytes through-
out the screen your table would be longer than 64k if you tried to de-
scribe the whole screen in this way, and whilst that would not be
impossible it would at least be formidable. It might seem possible
even to table individual bits in this way but there are 8 times as many
of them and locating them, though possible, would be a lengthy pro-
cedure.

Movement

Scrolling and panning of the screen are described in Chapter 8. They
are the most economical method of achieving movement. The selected
technique can be called, as with picture building, after each new file
record has been loaded.

More complex forms of movement can be achieved by having several
screens in memory and displaying them in sequence like the ‘cells’ of
film animation, and it is possible to combine scrolling and panning
with multiple displays because only the screen data is manipulated -
the originals cells continue to be available in memory for re-screening.

Chapter 13 1 59

AN EXAMPLE PROGRAM

The following example fills the screen with vertical lines and then
‘animates’ the middle part of the screen. After the lines appear, press
any key. When the movement stops press any key to return to your
calling program.

di 243

lda, 2 62 130 Block 2

out (a), 241 211 241 into 2nd address range
Id hl Start 33 0 64 Start of the bank

Id de Start+1 17 1 64 Next address

Id bc Count 10 52 Byte count (no Roller-Ram)
ld (hl), Byte 54 128 Light one pixel

Idir 237 176 Distribute

Ida, 1’ 62 129 Block 1

out (a), 241 211 241

1d hl Start 33 48 89

Id de Start+1 17 49 89

Id bc Count 1 208 38

Id (hl), Byte 54 128

Idir 237 176

ei 251

Ida,1 62 1 Restore to TPA

call MEM_M 205 33 253

lde, 1 14 1 Await key

call BDOS 206 5 0

ldhl11 33 1 1 Initialise count and byte
Id (), hnl 34 A A Storage address

Id bc SUBR9 1 89 59 Point to sub-r

call USERF 205 90 252

DEFW 233 0

ldc, 1 14 1 Await key

call BDOS 205 5 0

ret 201 Return to calling program

The sub-routine, which uses the byte value in (A,A) and the flag in
(A+1,A) and produces the movement, is as follows:

160

Address (S9,59)
Idb, 159

Loop:
push bc
ldb, 8
Loop2:
push bc
Id hl, Roller
push hl
ld e, (hl)
inc hl
Idd, (hl)
ex hl, de
add hl, hl
ldb, 8
Loop3:
push bc
push hl
ld b, 90
lda, (AA)
rica
Id(AA), a
ldde, 8
Loop4:
ld(hl),a
add hl, de
djnz Loop4
pop hl
inc hl
pop bc
djnz Loop3
pop hl
Id de 16
add hl de
pop be
djnz Loop2

Id hl Byte

Id a, (hl)
rica *
rica ¥
lda,b

ora

6 159

197
6 8

197
33 208 182
229
94
35
86
235
41
6 8

197

229

6 90
58 A A
7

50 A A
17 8 0

119
25

16 252
225
35
193

16 231
225
17 16 0
25
193
16 211

33 A A
126

7

7

71

183

PCW Super Code

Number of repetitions

Store
Num of print lines to animate

Store
Address of 14th line in Roller
Store
Half line address
into
DE
Then into HL
and double it
8 bytes per print line

Store

Store line address

Bytes accross screen
Get the screen byte
Rotate it

Replace byte in memory

And poke to screen
Next screen address to right
And repeat
Point to
next pixel line down
And repeat
for whole print line
Recover address in Roller
and point to
next print line entry

And repeat

Obtain the screen
byte for processing
Jazz
it up
Into B also
If the byte

Chapter 13 161

jrz4 40 4 is not zero

cp 255 254 255 and not 255

jrnz8 32 8 then jump on

lda, (A+1,A) 58 A+l A Else get the flag into A
xor 1 238 1 toggle it with ‘1’
ld(A+1,A),a 50 A+l A and replace it

lda (A+1,A) 58 A+l A Make sure it isin A

ora 183 If it is zero

jrzb 40 5 jump on

scf 55 Else set Cy

rlb 203 16 and add it to B (extra bit)
jr 2 24 2

srlb 203 56 If flag is “1’, just rotate B
Id (hl), b 112 Put byte back in store

pop be 193 Get byte of repetitions
djnz Loop 16 171 and repeat if not zero

ret 201 Else finish

The screen byte is stored at (A,A). The sub-r extracts it and rotates it
left for each screen filling. When each screen filling is complete, it sets
the carry flag and shifts this into the byte to make a thicker line. When
it has thickened all the way to 255, itis ‘thinned’ by shifting a bit out
of it.

The flag at (A+1,A) can have a value of ‘0" or ‘1’. One value sinals
‘rotate left’, the other signals ‘rotate right’. If the screen byte is found
to contain either ‘0" or ‘255" the flag is changed to the opposite value
by ‘xor 1’, and the rotation direction reverses.

The two rotations at (%) complicate the movement by sometimes re-
inforcing it and at others opposing it. This gives a ‘beating’ effect.

162 PCW Super Code

Chapter 14

Miscellaneous Output

There are a number of small sub-rs that are useful in practically all
programs. Frequently a status report needs to be made, a question
needs to be asked, or data requested. Inputing strings into programs
is also a chore if you are not equipped for it. These miscellaneous but
vital functions are covered in this chapter and the next.

Message printing

This technique was referred to in PCW Machine Code, but it is worth
repeating. Instead of noting the addresses of a whole lot of message
strings, it is more convenient to record only their sequence in a list
and number them from zero up. If you subsequently change any of
them, the alterations to their addresses will not matter because you
provide a ‘find-and-print’ routine that reproduces them when re-
quired wherever they are. You put the message number into A and
call the routine. The following example can actually handle three dif-
ferent lists that start at (N1,N1) (N2,N2) and (N3,N3) respec-
tively; the appropriate one is selected by the calling address. This is
handy when you have three (or more) distinctly different kinds of
string.

163

Chapter 14

MESPR Address (M,M)

Start 1:
Id hl N1 N1 33 N1 N1 Start of 1st list
jr8 24 8

Start 2:
Id hl N2 N2 33 N2 N2 Start of 2nd list
jr3 24 3

Start 3:

Id hl N3 N3 33 N3 N3 Start of 3rd list

ora 183 If (A) =0 no then

jr z Print 40 11 search needed
Next:

push af 245 Save A

lda (hl) 126 Test each

inc hl 35 byte for

cp ENDMKR 254 36 end-marker

jrnz -6 32 250 Repeat if not one

pop af 241 Else recover

dec a 61 A and decrement

jr nz Next 32 245 Loop if not zero
Print:

ex hl de 235 Else put address to DE

ldc9 14 9 and print

call BDOS 205 50 the string

ret 201 And finish

The list is scanned byte by byte and the message number in A is de-
cremented each time a string end-marker is found. When it reaches
zero, HL will contain the address of the message. This is tranferred to
DE and the message is printed. (When I first started with m/c, 1
could not believe that a routine containing so many operations could
possibly scan a long list and print a message from the end of it without
an embarrassing delay, but I tried it anyway. In fact it does it so fast
you can't tell it from normal string printing. That’s m/c for you.)

Comparing sequences

There is often a need to test to see if two byte sequences, particularly
two strings, are the same. A typical application would be in compar-
ing a password or an identity phrase with the contents of a console
buffer that has recently been filled from the keyboard.

164 PCW Super Code

To use the following sub-r for this, first load HL and DE with the
two start addresses and A with the number of comparisons to be
made (the length of string to be compared). If the two sequences do
not match then Cy is returned set and HL and DE will be pointing
to the first two non-matching bytes. If a complete maich is found Cy
is returned reset. In both cases A will contain the nurmber of match-
ing pairs detected before return.

COMPARE
ldb,a 71 Count into B
ldc,a 79 and into C
Loop:
ld a, (de) 26 Compare pairs of bytes
cp (k) 190 in turn
jrnzé 32 67 If not the same then jump
inc hl 35 Else point
inc de 19 to the next two
djnz Loop 16 248 and repeat
lda,c 121 If count now
ora 183 zero reset Cy
ret 201 and finish
Not:
lda,c 121 Original count
subb 144 minus remainder
scf 55 Set Cy and
ret 201 finish

Alternatively, and more economically, this routine could have been
based on ‘cpir’, but then it would not have provided the count to the
non-matching pair, though this may not matter in most cases.

Listing numbers

As part of my programming library I have collected a set of routines
that examine the bytes of my programs and paper-print a list of them
and the mnemonics to which they translate, along with jump dis-
tances and the Reference Numbers of programs to which jumps or
calls are being made. This process of interpreting bytes into the pro-
grams that gave rise to them is called dis-assembly. My Dis-assem-
bler is a very convenient tool because it not only provides me with a
permanent record of the programs, but it also shows up any faults
because if the coding is wrong then non-existent or unrelated mne-
monics will be printed out to indicate that it is.

Chapter 14 1 65

There are times when the dis-assembler routines (which in any case
are too long to re-produce here) are not available to me, and at others
they are not appropriate because the bytes I want to examine are a
mixture of data and program that can’t be interpreted in the usual way.
In these cases I use a much simpler routine that just prints (lists) the
numbers onto paper where they can be analysed at leisure. The
printed page format is ten 3-digit numbers per print line with three
spaces between each. At double line spacing this puts 300 numbers
onto a sheet of A4, but you can make that 600 if you print at single
spacing.

The program requires a CCB at addresses (c0 to c3,N), the last of
which should be zeroed. The third byte should contain ‘71" for single
line spacing, or ‘72’ for double line spacing.

(cO,N) String address Lo Byte
(c1,N) ditto Hi Byte

(c2,N) 71 or 72

(c3,N) Zero

The program also needs a 7-byte variables area consisting of:

(vO,N) Count of numbers per line
(vi,N) Lines to print

(v2/v3,N) String address

(v4/v5N) Address of this number
(v6,N) Duplicate count of nums

Before using the routine addresses v0 to v5 should be primed with
the required data. Space is required for a 75-byte printer string, the
address of which should be put into the first two bytes of the CCB.

The short main routine lists as follows:

MAIN
Id hl vl 33 v1 N Increment the
inc (hl) 52 line count
Next:
Id a, (v0) 58 v0 N Duplicate number count
Id (v6), a 50 v6 N in (v6,N)
Id hl vl 33 vl N After each line
dec (hl) 53 decrement the line count
ret z 200 End if zero

continued on the next page.. . .

166

call Init 2056 I 1
Loop:

call Load 206 L L

Id hl v6 33 v6 N

dec (hl) 53

jr nz Loop 32 247

Id de CCB 17 ¢c0 N

ldc, 112 14 112

call BDOS 205 5 0

jr Next 24 223

PCW Super Code

Initialise the print string

Load a number into string
Decrement the number count

And repeat if not zero
Point to CCB

and print

the string

And repeat

The main routine prepares the ground for the work done by the sub-

routines which are as follows:

INIT Address (I1)

Id hl, (c0) 42 0 N

ldb, 70 6 70
Loop2:

1d (hl), 32 54 32

inc hl 35

djnz Loop2 16 251

Id (nl), 10 54 10

inc hl 35

1d (hl), 10 54 10

ret 201

Point to start of string
70 bytes

Fill the string
with spaces

Terminate
with
two ‘Newlines’

‘INIT" prepares the string by filling it with spaces and adding the
print prompts at the end. ‘LOAD’ fills the print string as follows:

LOAD Address (L,L)

Id hl, (v4) 42 v4 N
Id a, (hl) 126

inc hl 35

Id (v4), hl 34 v4 N
1d(GG),a 50 X X
xor a 175

Id (G+1,G), a 50 X+1 X
call Get 206 G G
Id hi, (v2) 42 v2 N

Next source address
Extract the byte
Point to next

and save new address

Insert byte for
interpretation and
zeroise high byte
Get digits

Address in string

Chapter 14 1 67

push hl 229 Put address

pop de 209 into DE also

ldbc 6 160 Then

add hl, bc 9 add 6

Id (v4), hl 34 v2 N and store new address
Id hl Result 33 RR Copy

Id bc 3 130 numerals

ldir 237 176 into string

ret 201 And finish

‘LOAD’ takes the next byte address into HL, and extracts the byte
into A. HL is then incremented to point to the next byte. The byte is
put into memory as the low byte ready to be processed by ‘Get Digits’,
and the high byte is zeroised. The next string address is extracted into
both HL and DE, 6 is added to the HL version and this is returned
to storage ready for the next insertion. The numerals produced by
‘Get Digits’ are then transferred into the string.

The sub-r ‘Get Digits’ is one of universal interest and was described
in PCW Machine Code. It converts any 8- or 16-bit number into the
corresponding numerals ready for display.

168 PCW Super Code

Chapter 15

Miscellaneous Input

Is that OK?

This is the most frequent and the most necessary question to be asked
of the program user. The string is stored as a message (see page 162)
together with the necessary escape sequences for position etc. Lets say
its number is ‘K’. The string first clears the bottom two lines of the
screen, and is made up as:

13 27 89 62 32 Next to bottom line

27 74 Clear bottom two lines
27 89 63 62 Print on bottom line
“Is that OK?” Text

32323232 Spaces before reply

36 End-marker

The string is displayed and a key-press is awaited. Only ‘yes/no’ re-
plies are acceptable. To make keying for non-typists easier the follow-
ing equivalent keys may be used:

Chapter 15 1 69

YES NO
Iyl Or IYI lnl or INI
ENTER SPACE
RETURN

The assessment of the pressed key is performed as follows:

OK
lda, K 62 K Print the
call MESPR 206 M M query
Await
lde, 1 14 1 Await
call BDOS 205 5 0 a key
res5,a 203 175 Convert to Capitals
cp ‘N’ 254 78 If key is
jrz No 40 14 N, w
ora 183 Test for ‘Space’ (=0)
jrz No 40 10 jump on
Yes
cp RETURN 254 13 If key is
jrz 40 4 ENTER,
cp Y 254 89 RETURN
jr nz Await 32 233 Y ory
ora 183 Then reset Cy
ret 201 And finish
No
scf 55 If ‘No’ then
ret 201 set Cy & finish

If any of the ‘yes’ keys is pressed a return is made with Cy reset. If
a ‘no’ key is pressed Cy is set. Testing Cy on return indicates the
choice. Note that resetting bit5 of A will reduce 32 to zero, so
‘Space’ is tested for as a zero.

Number input

There can’t be many programs that operate without a need to accept
numbers from the keyboard. The main routine ‘INTDIG’ must be
able to

a) ignore non-number input

b) take account of digit positions

c) restrict the number of digits to a permitted maximum.

170 PCW Super Code

and it uses the sub-r 'NUMACC’ to achieve this. NUMACC awaits
each key-press in turn and rejects non-numerical input except for
‘RETURN’ and ‘EXIT’, but you can adapt it to accept decimal points
as well (see the note on deimals at the end of this section). Its truth-
table is as follows:

Key Code Cy Z

ENTER/RETURN 13 SET reset
EXIT 27 reset SET
Number 48-57 reset reset

Hence if a return is made with Z set, then ‘EXIT" has been pressed
and the input should be ignored. A return with Cy set indicates that
the input of digits is complete and their value should be calculated.
When a number key is pressed its ASCII will be returned in A for
processing and both Cy and Z will be reset. Any routine that uses
NUMACC will therefore test Cy and Z to assess the value of the
input.

NUMACC Address (AA)

Start
ldc 1 14 1 Await a
call BDOS 205 5 0 key
cp ENTER 254 13 If not ENTER/RET
jrnz3 32 3 then jump on
inca 60 Else reset Z
scf 55 set Cy
ret 201 and finish
cp EXIT 254 27 If not EXIT
jrnz 2 32 2 then jump on
xor a 175 Else set Z , reset
ret 201 Cy & finish
cp 0 254 48 If smaller than
jr ¢ Cancel 56 6 48 then goto Cancel
op: % 254 58 If larger than
jr nc Cancel 48 2 57 then goto Cancel
ora 183 Otherwise reset Cy
ret 201 & Z and finish
Cancel
lda,C 62 C Print the ‘cancel’
call MESPR 206 M M message

jr Start 24 221 And go for next key

Chapter 15 1 71

The ‘cancel string’ is stored in one of the message lists and consists of:
8 32 8 36

It moves the print position left by one column, prints a SPACE to
obliterate the last character, and then moves left again ready for the re-
placement.

INTDIG needs a minimum of 11 bytes of variables but we will give it
16 to get a singing-and-dancing version. These are

V/V+1 16-bit result

V+2 Max number of digits
V+3 Digits remaining
V+4/V+5 Addr of next digit
V+6 27

V+7 89

V+8 DEFB Line+32

V+9 DEFB Colm+32
V+10 DEFB Ten-thousands
V+11 DEFB Thousands
V+12 DEFB Hundreds
V+13 DEFB Tens

V+14 DEFB Units

V+15 36 End-marker

Before using INTDIG you should establish the required print position
on the screen so that the digits appear where you want them to. The
print position specified at (V+8)/(V+9) will apply only when the
stored string is re-printed. Naturally it won’t affect the screen location

of the digits as they are keyed in.

Put the maximum allowed number of digits (up to 5) into V+2. Itis
necessary to have a facility for limiting the number of digits in order to
provide a ‘restart’ technique, and because more than 5 digits will
give unreliable results. In fact results from five-digit numbers larger
than 65535 will also be anomalous. Note that mistakes cannot be
erased with the DEL keys. When one is made (ie. if a wrong digit is
input) then keep typing until the maximum is exceeded because this
will provide a restart. Alternatively press ‘EXIT’ to abort.

The numerical value of the digits is returned in V+0 (low byte) and
V+1 (high byte). If you later need to print the number somewhere
else, put the screen position into V+8 and V+9 and print from V+6.

172 PCW Super Code

INTDIG Address (I1I)

lda, S 62 S Save the cursor
call MESPR 2060 M M position

Start
lda, E 62 E Erase any previous
call MESPR 206 M M input
Idhlo 33 0 0 Zeroise the result
1d (V), hl 34 VvV X and also zeroise

1d (V+11), hl 34 V+11 X from units to
Id (V+13), hl 34 V+13 X thousands

lda, (V+2) 58 V+2 X Copy the maximum also into

Id (V+3),a 50 V43 X V+3 as a count

Id hl, V49 3 V49 X Store the 1st digit

1d (V+4), hl 34 V4 X address minus 1

inc hl 35 Store an artificial

Id (h) 0’ 54 48 ‘zero’ result
Digits

call NUMACC 205 A A

ret z 200 Finish if "EXIT’ pressed

jr ¢ Shift 56 23 Jump on if 'ENTER’ pressed

Id hl (V+4) 42 V+4 X Last address used

inc hl 35 Point to next

Id (V+4) 34 V4 X and store

Id (hl) a 119 Store ASCII

Id hl V+3 33 Vi3 X Decrement the

dec (hl) 53 count and goto

jr nz Digits 32 236 next if not zero
Finish

lde, 1 14 1 Await

call BDOS 206 5 0 an extra key

cp 13 254 13 If this is not ENTER or RET

jr nz Start 32 195 start from scratch
Shift)

Ida, (V+14) 58 V+14 X Units into A

ora 183 If not a zero go

jr nz Calc 32 18 to Calculate

Id be, 4 140 Else shift 4 bytes

Id de, V+14 17 V+14 X Moveall

Id hl, V+13 33 V+13 X digitstoa

lddr 237 184 higher address

Ida, 48 62 48 And insert a ‘0’

Id (V+10) a 50 V+10 X in Ten-thousands

jr Shift 24 232 Try again

continued on next page.. . ..

Chapter 15

Calculate

Idhl, 0
Ten-thousands

Ida, (V+10)

Id de, 10000

call EVAL
Thousands

Ida, (V+11)

Id de 1000

call EVAL
Hundreds

lda, (V+12)

Id de, 100

call EVAL
Tens

lda, (V+13)

Id de, 10

call EVAL
Units

Ida, (V+14)

sub 48

lde, a

ldd, 0

add hl, de
Store & finish

1d (V) ,hnl

push hl

lda R

call MESPR

pop hl

xor a

inca

ret

3 0 0

58 V+10 X
17 16 39
205 E E

58 V+11 X
17 232 3
205 E E

58 V+12 X
17 100 0
205 E E

58 V+13 X
17 10 0
205 E E

58 V+14 X
214 48

95

38 0

25

34 vV X
229

62 R

206 M M
225

175

60

201

173

HL will hold the result
Ten-thou ASCII in A
Evaluate ten-thous

Thoys ASCII etc

Hundreds ASCII etc

Tens ASCII etc

Units ASCII into A
convert to number
and
add
to HL

Store the result
Save
Print

‘restore’ cursor
Recover HL
Reset Cy

and Z
Finish

The contribution of each digit is calculated and added into HL by the
sub-r 'EVAL’, which lists as follows. On entry DE contains the digit
value 10,000 1000 or whatever), and A contains the ASCII of the digit.

EVAL Address (E,E)

sub 48
ora

rel z

add hl de
dec a

jr nz

ret

214 48
183

200

25

61

32 252
201

ASCII todecimal in A
If zero
then finish
Repeatedly add digit value
into HL until
until A is zero
Then finish

174 PCW Super Code

INTDIG first saves the cursor position in case it is needed again, and
then the sequence of operations is:

Start
Any previous input is erased in case a restart is being made. The erase
string is a message made up of

27 107 Restore cursor position
27 106 and save again

27 75 Erase to end of line

36 End marker

The result is zeroised, as are the digits of the units, the tens, the hun-
dreds and the thousands. The maximum number of digits is copied
into V43 to act as a decrementing count, and the address minus one
of the storage place of the first digit is put into V+4. An artificial zero
is then put into the ten-thousands in case no further digits will be
typed in, ie. in case ‘RETURN’ is the first key pressed.

Digits

The digits are taken in from NUMACC and stored in the address con-
tained in V+4, which is incremented each time. The count in V+3 is
also decremented. If NUMACC returns Z set then the program ter-
minates also with Z set. If it returns Cy set then no more numbers
are required and a jump to ‘Shift’ is made.

Finish

If the count in V+3 reaches zero then an extra key-press is required. If
this is anything except ‘RETURN’ or ‘ENTER’ (which signal that the
user is happy with his input) then a restart is made. If it is either one
then the program continues in ‘Shift’.

Shift

Although anything up to 5 digits may be permitted, less than the
maximum may actually have been typed in. It is therefore necessary
to shift them up in memory until V+14 (the units) contains a byte
other than zero. At each shifta ‘0’ numeral (ASCII 48) is put into
V+10 (ten-thousands). When the necessary amount of shifting has
been done, they will be in their proper places for printing and for cal-
culating from.

Calculate
The total of the contributions of each of the digits is to be added into
HL by EVAL, which is called with DE containing the digit rank

Chapter 15 1 75

(ten, a hundred, etc), and with A containing the ASCII of the digit.
48 is subtracted from the ASCII to convert it into a number and the
rank is added into the total (A) times. For the units, 48 is subtracted
from A, and this is added to total.

Store

The result is stored at V (but is also available in HL) and Cy and Z
are reset to indicate a successful completion. The saved cursor posi-
tion is discarded by the message ‘Restore’ (=27 107 36).

If you want to accept decimals as legal input, then make the digit store
one byte larger to accommodate the decimal point, and don’t count in
units, count in the lowest rank that will be used. So if you need to
deal down to hundredths, for example, then count in hundredths.
Then the result ‘255" would actually mean 2.55. NUMACC will
need to recognise “.” as legal and it should be inserted into the digit
store. The program also needs to recognise that inputs of either
“555.00”, “555.0”, “555.” or “555” all mean 555.00 and this can be
achieved by changing the shifting procedure. Instead of shifting until
the units contain something other than zero, shift until the decimal
point is in its correct place and put ‘48’ in place of any zeroes after (in
higher memory than) the decimal point. Before the shifting starts, the
program must check through the digits. If it doesn’t find a “.”
amongst them, then it must insert one itself as the last digit and then
shift as before.

Inputing strings

Assemblers usually make it possible to insert strings into memory
even if you don’t know the ASCII codes; itis enough to enter ‘String
Mode’ and press the alphanumeric keys relating. For anyone who
hasn’t got this facility a great deal of time and trouble will be saved by
using the following home-grown equivalent.

It is available whenever I am compiling and I (note) jump to it by
pressing capital ‘X’. When summoned it asks you for the address at
which the string is to be inserted, which you enter as two decimal
bytes, each followed by ‘ENTER’, low byte first. After confirming
that the address is correct (SPACE='no’, ENTER="yes’), you type in
the string.

For letters and numerals etc., you simply press the keys. For numeri-
cal input (the numbers used escape-sequences, for example,) you

176 PCW Super Code

signal “this is going to be a number” by pressing the boxed ‘+" (to
the left of the space bar) to start the number, and ‘ENTER’ when you
have completed it. When the string is complete you press ‘ENTER’.

The routine can be placed anywhere in memory, at the address ‘Addr
say. It needs five bytes of variables storage starting at (V,N) into
which go the following data.

V/V+1 Start address of string

V+2 Max allowed bytes
V+3 Flag 1=digit, 0=ASCII
V+4 Count of bytes

Note that you need to put the required number in at V+2 before
calling the routine, but none of the other variables need priming. I
normally keep the max input at 50, a nice round number. The reason
for having a maximum is that the program will insert the bytes into
memory as you type them, so if you forget and go berserk you may
overwrite something.

The page string at (PP) is as follows:

27 69 13 27 89 3532 27 114
“WRITE A STRING”

27 117 10 10 13

“Start addr bytes:”
277599 36

The input of the second byte is placed by a position string at (B,B):
13 27 89 38 68 36

The inputed text is placed by a position string at (T,T):
13 10 10 32 32
“String:”

9936

We also need a string at (L,L) to move to the next line down to print
any numbers typed in:

13 10 36

Because there is more than one occasion of checking to see if the maxi-
mum number of bytes has been exceeded, this operation is given to a

Chapter 15

sub-routine at (M, M):

MAX
Idhl, V+2
lda, (V+4)
sub (hl)
ret nz

pop hl
Ide, 7

lde, 2

call BDOS
Id de, TEXT
ldce, 9

call BDOS
ret

33 V+2 N
58 V4 N
150
192

225

30 7
14 2
206 5 0
17 T T
14 9
205 5 0
201

The main program lists as follows:

MAIN Address (A,A)
call MAIN
jp MENU

Program
Idhl, 0
Id (V+3), hl
Ida,3
Id (Digits), a
Id de, PAGE

lde, 9
call BDOS

Accept address
call INTDIG
Id a, (RESULT)
1d(V)a
Id de ,BB
ldc, 9
call BDOS
lde, “,”
ldc, 2
call BDOS

continued on next page

205 A+6 A
195 N N
3 0 0

34 V43 N
63 3

50 D D
17 P P

14 9

206 5 0
206 11

58 R R

50 V X

17 B B

14 9

206 5 0
30 44

14 2

205 5 0

177

If max number
not reached
then
proceed

Else cancel this
‘call’ and

beep

Start text
again

And return to main

Call this prog
and return

Zero flag and
byte count
Setto 3
digits max
Page string
print
it

Interpret 3 digits
Take low byte
and store
Set posn for
2nd
byte
Print ”,”

178

call INTDIG
Id a, (RESULT)
ld(V+1),a

call OK?
jr ¢ PROG

WRITE STRING
Idde, TT
lde, 9
call BDOS
Next
lde, 1
call BDOS
cp ENTER
ret z
ldhl, V+4
inc (hl)
cp ‘+
jr z NUMS
Aciis
Idhl, (V)
Id (hl), a
inc hl
ld (V), hl
Id (nl), 0
call MAX
jr Next
Numbers
Idhl, V+3
bit 0 (hl)
jrnz8
Idde LL
dc, 9
call BDOS
Id hl, V+3
Id (nl), 1
call INTDIG
ldhnl, (V)
Id a, (RESULT)
Id (hl), a
inc hl
Id (V), hl

2056 11
58 R R
50 V+1 X

206 K K
56 200

17 TT
14 9
205 5 0

14 1

206 5 0
254 13

200

33 V4 X
52

254 22

40 18

42 VvV X
119

35

34 Vv X
54 0

2060 M M
24 225

33 Vi3 X
203 70
32 8

17 L L
14 9

205 50
33 V+3 X
54 1

206 11
42 VvV X
58 R R
119

35

34V X

concluded on next page. . ..

PCW Super Code

Interpret 3 digits
Take high byte
and store

If not OK
repeat

Position
string
for text

Await a
key
If 'ENTER’
finish
Increment count
of characters
If boxed +
goto nums

Else put ASCII
into memory
and point to
next address

Zeroise it

If too many, end

Else next char

Test flag, if last
was also a number
then jump on

Else print on

next line
down

Set the flag
to ‘nums’

Accept value

Get mem addr
and insert
this value

Point to
next mem

Chapter 15

ldde, LL
ldec, 9

call BDOS
call MAX
jr Next

17 L L

14 9

206 5 0
2060 M M
24 178

Print on

on next

line down
Finish if too many
Else next

179

180 PCW Super Code

181

APPENDICES

182 Appendix 1

EQUIVALENT ADDRESSES

The following table gives the equivalent in hex and decimal of the
‘red-biro’ addresses used in the book. They are in ascending order.

©0 0000 O (10494) 5E68 24168
1.0) 0001 1
(50) 0005 5 (10695) 5F6A 24426
640) 0040 64
(1280) 0080 128 , 9496) 6068 24670
(1310) 0083 131
(1910) OOBF 191 92,103) 675C 26460
(1940) 00C2 194
(197.0) 00C5 197 94,104) 685E 26718
(200,00 00C8 200 (179,104) 68B3 26803
(2180) O0ODA 218
(2210) 00DD 221 ©0,128) 8000 32768
(2240) O00E0 224
(2270) O00E3 227 (47,179) B329 45871
(2300) 00E6 230
(233.0) O0E9 233 (0,182) B600 46592
©1) 0100 256 (255,183) B7FF 47103
(1582) 0293 670 (240,191) BFF0 49136
64,30) 1E40 7744 0,192) CO00 49152
6192) C006 49158
24037) 25F0 9712 (10,192) COOA 49162
(20192) CO14 49172
(23238) 26E8 9960 (35192) C023 49187
(94,192) COSE 49246
(118,40) 2876 10358 (114192) CO72 49266
(127.192) CO7F 49279
(15244) 2C98 11416 (120,192) CO78 49272
(4849) 3130 12592 (150,193) C196 49558
0,64) 4000 16384 2,194) C202 49666

(48,89) 5930 22784

Equivalent addresses

(0,200)
(100,200)
(140,200)
(160,200)
(170,200)
(172,200)
(180,200)

(120,226)
(130,226)
(132,226)
(177,226)

(69,227)
(235,227)

(0,228)
(110,228)

(128,242)
(0,246)
(6,246)

(74,246)

(244,251)
(248,251)

(3,252)
(90,252)

(33,253)
(45,253)

(111,254)
(119,254)
(167,254)

(255,255)

C800
C864
C88C
C8A0
C8AA
C8AC
C8B4

E278
E282
E284
E2B1

E345
E3EB

E400
E46E

F280
F600
F606
Fe4A

FBF4
FBF8

FD03
FD5A

- FD21

FD2D
FE6F
FE77
FEA7

FFFF

51200
51300
51340
51360
51370
51372
51380

57976
57986
57988
58033

58181
58347

58368
58478

62080
62976
62982
63050

64500
64504

64515
64602

64801
64813

65135
65143
65191

65535

183

184 Appendix 2

PRINTER DRAFT FONT DATA

1. LABEL INTERPRETATION

The following list shows the bytes to which the labels translate. They are
given in the order in which they appear in memory. (The Translation Table
contains only the bytes on the right not the label numbers, which are shown
here for ease of reference.)

Label Byte Label Byte Label Byte
0 o0 30 9 60 168
1 64 31 24 61 160
2 1 2 126 62 156
3 4 33 8 63 154
4 65 34 80 64 136
V) 35 31 65 121
6 34 36 6 6 112
7 8 37 12 67 102
8 127 38 81 68 100
9 68 39 70 6 95

10 20 0 e 70 89
Hn Z ' 41 4 71 86
12 16 2 3 72 83
13 73 43 254 73 76
14 84 4 192 74 74
15 28 45 125 75 67
6 9 46 97 76 61
17 128 47 88 77 52
18 56 48 69 78 50
19 120 49 63 79 38
20 66 50 48 80 36
21 40 51 33 81 30
2 5 52 2 82 25
23 85 53 21 8 15
24 124 54 17 84 10
% 7 55 12

26 54 56 7

27 42 57 250

28 60 58 204

29 18 59 188

Draft Font data

2. BYTE LOCATION

185

The following list shows the bytes that appear in the Translation Table, but
this time in ascending order of their own magnitude. The label with each
byte shows where the byte is to be found. If you want to know if a byte
appears in the table look for it in this list.

Byte Label
0 0
1 2
2 11
3 4
4 3
5 2
6 36
7 56
8 7
9 16

10 84
12 55
15 83
6 12
17 54
18 29
20 10
21 53
2 52
24 31
%5 82
28 15
30 81
31 35
2 5

B 00 Q2 O W
OO\ W
N o]
— o)

Byte

41
42
48
50
52

54
56
60
61
62

63
64
65

Label

41
27
50
78
77

26
18
28
76
40

49
1
4
20
75

9

48
39
25
25

74
73
34
38
33

72
14
23
71
47

Byte

89
95
96
97
100

102
112
120
121
122

124
125
126
127
128

136
154
156
160
168

188
192
204
250
254

Label

70
69
30
46
68

67
66
19
65
37

24
45
32
8

17

64
63
62
61
60

59
44
58
57
43

186 Appendix 2

3. ‘OFESETS

The following are the (data packed) offsets from (92,103) at which the set
of labels for each character is to be found. The number of labels in a charac-
ter is given by subtracting one (stripped) offset from the next.

Specials:

ASC Offset ASC Offset ASC Offset ASC Offset
0 @871 8 (130,17) 16 (186,1) 24 (242,1)
1 93,1 9 (135,1) 17 (190,1) 25 (250,1)
2 (102,1) 10 (143,1) 18 (198,1) 26 (2,2)
3 (108,1) 11 (1511 19 (204,1) 27 (10,2)
4 (114,33) 12 (157,1) 20 @13.1) 28 (18,2)
5 (117,33) 13 (162,1) 21 (2211) 29 (25)2)
6 (121,1) 14 (171,1) 22 (230,33) 30 (32,2)
7 (129,65) 15 (179,129) 23 (233,1) 31 (41,2)

Standard set:

55 7 (151,2)

56 8 (159,2)
32 Space (46,2) 57 9 (163,2)
33 ! (46,66) 58 E (172,2)
34 ” (47,34) 59 3 (173,178)
35 # (50,2) 60 & (175,18)
36 $ (55,2) 61 = (179,2)
37 % (62,2) 62 > (181,18)
38 & (71,2) 63 2 (185,18)
39 ’ (79,66) 64 @ (190,2)
40 ((80,34) 65 A (197,2)
41) (83,50) 66 B (206,2)
42 = (86,2) 67 C (210,2)
43 + 91,2 ‘ 68 D (215,2)
44 g (96,178) 69 E (220,2)
45 - (98,2) 70 F (224,2)
46 ' (100,66) 71 G (228,2)
47 / (101,18) 72 H (234,2)
48 0 (108,2) 73 I (238,34)
49 1 (114,34) 74 J (241,2)
50 2 (116,2) 75 K (246,2)
51 3 (121,2) 76 L (251,2)
52 4 (126,2) 77 M (254,2)
53 5 (133,2) 78 N (5,3)
54 6 (142,2) 79 @) (12,3)

Draft Font data

80
81
82
83
84

85
86
87
88 -
89

s<c Homow

90
91
92
93
94

ag—-N =X

95

96 acc
97 a
98 b
99

100
101
102
103
104

= 0 QO

105
106
107
108
109

B g

110
111
112
113
114

"0 O 3

115
116
117
118
119

g<pg~o®

(16,3)
(20,3
(27,3)
(33,3)
37,3)

120
121
122
123
124

g~ N< X

125
126
127

(42,3)
(48,3)
(57,3)
(66,19)
(73,3)

(82,3)
(87,35)
(90,19)
(97,35)
(100,35)

(=% B

Table end

(103,3)
(105,51)
(107,3)
(112,3)
(116,19)

(119,3)
(123,3)
(132,19)
(137,131)
(146,3)

(150,35)
(153,19)
(158,3)
(162,35)
(165,3)

(170,3)
(175,3)
(179,131)
(183,131)
(187,19)

(192,3)
(196,19)
(202,3)
(207,3)
(216,3)

187

(225,3)
(230,131)
(239,3)
(244,35)
(248,67)

(249,35)
(253,3)
34)

124

END

188 Appendix 3

PRINTER NLQ FONT DATA

This lists the NLQ label translations in the order in which they appear in
memory. (The Translation Table contains only the pairs of bytes on the right
not the label numbers, which are shown here for ease of reference.)

1. LABEL INTERPRETATION

pass: pass: pass: pass:
Lbl. 2nd 1st Lbl. 2nd 1st Lbl. 2nd 1st Lbl. 2nd 1st
0 0 © 3 2 2 60 1 2 90 3 2
1 0 65 31 16 o4 66 0 3 91 2 1
2 0 o4 32 8 32 62 60 124 92 28 29
3 0 68 33 2 0 63 128 34 93 16 36
4 0 1 34 16 32 64 152 2 94 16 33
5 0 8 35 24 16 65 2 64 95 0 42
6 0 4 36 4 1 66 33 8 9% 9 32
7 0 34 37 0 5 67 32 8 97 35 6
g§ 8 0 38 128 O 68 0 33 98 36 2
9 1 O 39 1 64 69 16 1 9 32 5
10 0 4 40 12 8 70 60 120 100 34 2
11 0 20 41 0 9 71 128 2 101 33 2
12 0 84 42 63 62 72 60 60 102 18 8
13 0 73 43 56 56 73 33 65 103 8 17
14 33 O 4 0 85 74 0 80 104 22 1
15 32 0 45 4 80 75 24 56 105 5 16
16 0 32 46 48 32 7% 0 70 106 18 2
17 18 0 47 0 72 77 4 65 107 4 16
18 63 127 48 8 16 78 0 66 108 16 4
9 0 2 49 12 0 79 1 65 109 1 17
20 4 o4 50 16 65 80 64 O 110 1 12
21 0 16 51 0 81 81 40 16 111 4 9
22 36 0 52 32 82 82 36 16 112 "4 8
23 16 0 53 36 1 83 41 O 13 9 2
24 0 40 54 32 4 84 37 0 114 10 1
25 0 128 55 32 1 85 24 0 1153 8 1
26 0 69 5 0 17 86 20 0 116 2 6
27 32 o4 57 8 8 87 4 12 117 2 5
28 12 28 58 8 4 8 5 2 118 1 4
29 16 16 59 4 4 89 2 4 119 5 0
121 1 3
122 1 1

NLQ Font data 189

2. BYTE LOCATION

The following list shows the bytes that appear in the Translation Table, but
this time in ascending order of their own magnitude. The label with each
shows where the byte is to be found. If you want to know if a byte appears
in the table look for it in this list.

Byte 1st pass label No 2nd pass label No

0 089 1415 17 22 0123456710 11 12
2333 38 49 80 83 13 16 19 21 24 25 26 30 37 41
84 85 86 119 44 47 51 56 61 68 74 76 78 95

1 4 36 53 55 69 91 9 39 60 79 109 110 118 120 121

104 114 115 121

2 19 30 60 71 88 90 33 64 65 89 91 116 117
98 100 101 106 113

3 61 120 90

4 6 10 5458 59 89 108 118 20 36 45 59 77 87 107 111 112
5 37 99 117 88 105 119

6 97 116

8 5 40 57 66 67102 112 8 32 48 57 58 103 115

9 41 111 9 113

10 114

12 87 110 28 40 49

16 21 29 35 48 81 23 29 31 34 50 69 93 94 108
82 105 107

17 56 103 109

18 17 102 106
20 11 86

22 104

24 75 35 85

28 28 92

190

29
32
33
34
35
36
37
40

41

48
56
60
62
63
64
65
66
68
69
70
72

73

1st pass label No

16 32 34 46 52 96
68 94
7 63

93

24

95

43 75
72
42

2 20 27 31 39 65
150737779
78

3

26

76

47

13

2nd pass label No

92

15 27 52 54 55 67 99
14 66 73 101

100

97

22 53 82 98

84

81

83

46
43

62 70 72

18 42

Appendix 3

NLQ Font data 191

Byte 1st pass label No 2nd pass label No
80 45 74
81 51
84 12
85 44
120 70
124 62
127 18
128 25 38 63 71

152 64

192

3. OFFSETS

Appendix 3

The following are the (data packed) offsets from (104,94) at which the set
of labels for each character is to be found. The number of labels in a charac-
ter is given by subtracting one (stripped) offset from the next.

Specials:
ASCII Offset
0 (246,1)
1 02
2 (242)
3 (382
4 (51,66)
5 (59,98)
6 (632)
7 (83,82)
Standard Set:
32 Space
33 !
34 7
35 #
36 $
37 %
38 &
39 !
40 (
41)
42 *
43 +
44 .
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
58 5
54 6

ASCII Offset

8 (92,2)

9 (117,2)
(142,2)
(164,2)
(180,2)
(196,2)
217,2)
(234,130)

(274)
(27,84)
(32,20)

(484)
(794)
(96,4)
(123 ,4)
(155,84)

(162,116)
(168,68)
(174,20)
(187,20)
(192,84)

(201,4)

(205,84)
(210,36)
(223,36)
(233,52)

(239,4)
4,5)
(23,5)
(42,5)
(53,5)

ASCII

16
17
18
19
20
21
22
23

Offset

(253.2)
(15,3)
(373)
(62,3)
(85,3)
(112,3)
(135,35)
(141,3)

B Yelo RN |

~.

OZZrUA TTToOT HONWP @V A

ASCII

24
25
26

Offset

(162,3)
(176,19)
(186,3)
(209,3)
(219,3)
(232 ,3)
(247,3)
6,4

(62,5)
(77,5)
(94,5)
(107,85)
(112,85)

(121,37)
(128,5)
(132,37)
(139,5)
(152,5)

(178, 5)
(202,5)
(215,5)
(224,5)
(233,5)

(244,5)
(1,6)
(20,6)
(34,70)
(39,6)

(50,6)
(68,6)
(77,6)
(92,6)
(108,6)

NLQ Font data

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

s<c Howow

cg— N <KX

ael

95
96 acc
97 a

98
99

[elon

100
101
102
103
104

=08 0 QO

105
106
107
108
109

By e e e

110
111
112
113
114

"0 C 3

115
116
117
118
119

s<g o

(120,6)
(129,6)
(149,6)
(169,6)
(184,6)

(203,6)
(221,6)
(237,6)
0,7
(19,7)

(38,7)

(62,39)
(65,39)
(78,39)
(81,71)

(86,7)
(90,103)
(93,7)
(110,7)
(119,7)

(126,7)
(136,7)
(144,23)

(157,135)

(178,7)

(189,39)
(198,7)
(213,7)
(233,39)
(238,7)

(255,7)
(14,24)
(20,136)
(34,136)
(48,8)

(57,8)
(67,8)
(82,8
(92,8)
(109,8)

120
121
122
123
124

g N X

125
126
127 0

I

Table end

193

(128,8)
(143,136)
(174,8)
(199,104)
(208,104)

(209,40)
(218,40)
(227.8)

(244,8)

END

194 Appendix 4

SWITCHING MEMORY BANKS

This corrected and updated account of block and bank switching is
taken more or less verbatim from the 3rd edition of PCW Machine
Code. Readers of earlier editions may be interested in the corrections.

The processor Ports

The Z80 makes contact with the outside world through ‘ports’, which
can pass bytes inwards to the processor, or outwards from the proces-
sor to some device connected to it.

There are two ways of operating the ports. In the first the ‘address’ of
the port is loaded into BC and then either the ‘in’ instruction takes a
byte from the external device (a section of the keyboard, say) and
puts it into a register; or alternatively the ‘out’ instruction feeds the
byte that is in the register out into the external device. The mnemonics
would be as follows for the register ‘R’;

inR,(c) or outR/(c)

However, access to the Memory Disc is gained through the other
method of using ports, and we will be concerned only with the ‘out’
version. In this the required byte is put into A and the port number is
specified as part of the instruction code. To output the content of A
through any one of the ports the generalised mnemonic and the gener-
alised decimal instruction bytes are;

out(P), a 211 P where ‘P’ is port No.

A is the only register available for use with this instruction

The Memory Manager

The ‘Memory Manager 1is located at address FD21h (33,253)
[FD2Dh (45,253) for the ‘9512’] in common memory. This is the sub-
r that lines up the set of memory blocks that are required to be avail-
able to the Z80 at any particular moment. Usually this is Bank
1 (the TPA), but it may be any of the others. The Manager is entered
with A containing the Bank No required and this it stores at address
FEAOh. It then loads A with each of three values prior to making

Block Switching

195

three ‘out’ instructions to port Nos FOh, F1h, and F2h (e. ports 240,
241 and 242). The values put into A and then sent to these ports
determine which memory blocks are switched into circuit. The basis
of the Memory Manager (for ‘8256/512’) is as follows:

The Memory Manager

FD21 push hl
ld (FEAOh), a
deca

FD26 jrz30

Banks 0,2 and N
FD28 inca

Id hl, 8381h

%9

1d1, 88h

cp2

jrz3

add 86h
FD36 ldl,a

FD37 1d a, 80h
out (FOh), a
I1d (0061h), hl
lda,l
out (F1h), a
lda, h
out (F2h), a
pop hl

FD45 ret

Bank 1 (TPA)
FD46 1d hl, 8685h

Id (0061h), hl
Ida,l
out (F1),a
lda,h
out (F2), a
Id a, 84h
out (F0), a
pop hl

FD57 ret

229

50 160 254
61

40 30

60

33 129 131
409

46 136
254 2

40 3

198 134
111

62 128
211 240
3497 0
125
211 241
124
211 242
225
201

33133 134
34970
125

211 241
124

211 242

62 132

211 240
225

201

Save HL

Store A

If(A)=1
jump to FD46.

Else restore (A),
load HL,
If(A)=0 jump to FD37

If Bank = 2 then
jump to FD37.

If Bank > 2 then
(L)=134+(A).

Set
the
values in A
and
give
the ‘out’
instructions.
Recover original (HL)
and finish.

As
above.

Recover original (HL)
and finish.

196

Appendix 4

The ‘push’ and ‘pop’ instructions are fairly common features of the
sub-routines within CP/M and are included so that data held in HL
is preserved for later use if required (see the note in Interrupts), but
they are not essential to the bank-switching operation. If you follow
through the pattern of the sub-r you will see that the values in A used
for the ‘out’ instructions are unequivocal in the cases of calling for
Banks 0, 1 and 2. The bytes fed to the ports in order to switch-in these
banks are as follows. The block No is equal to the byte minus 128, as
shown to the right. Block 7 gets no ‘out’ instructions.

FO F1 F2 blocks
Bank 0 128 129 131 6 1 3 7
Bank 1 132 133 134 4 5 6 7
Bank 2 128 136 131 0 8 3 7

For banks of higher number the value sent to F1 is equal to [134+(a)] so
the sequence continues as;

Bank 3 128 137 131 0o 9 3 7

Bank 4 128 138 131 0 10 3 7

Bank 5 128 139 131 0 11 3 7 etc
(Sern Envment 128 129 130 0 1 2 7))

Note that only one block is changed for Bank Nos larger than 1. The
Screen Environment cannot be accessed through the Memory Man-
ager, but I include a list of its blocks for completeness.

General rules for block switching

The above switching sequences are those employed by the PCW for
its own good reasons, but if you want to swop the blocks about in
your own way then the following rules apply. I developed my
‘Empirical Technique’ before I had fully cottoned on to them.

To refer to a block add 128 toits number, so No 0 becomes ‘128,
No 1 becomes ‘129°, etc. There are four memory ranges in the
machine; give them the following numbers:

hex red-biro No
0000 to 3FFF 0,0) to (255,63) 240
4000 to 7FFF 0,64) to (255,127) 241
8000 to BFFF (0,128) to (255,191) 242
C000 to FFFF (0,192) to (255,255) 243

Block Switching 197

Forget about the highest range because it should always contain Block
7, but any other range can have any block switched into it by ‘out (1),
a’ where T is the range number, and A has been loaded with the
block number. Hence to put Block 10 intc the bottom range the in-
structions would be:

Ida, '10’ 62 138
out (240), a 211 240

When doing any block switching by use of ‘out’ instructions, it is
necessary to disable the interrupts first, and to re-enable them later.

di 243 Disable the interrupts

Id a, BLOCK 62 N2 Select block No

out (R), a 211 R Switch it in

i - Your

53 6 o procedure

Id a, BLOCK 62 N1 Restore the

out (R),a 211 R original block

ei 251 Enable interrupts
continue . . .

Don’t forget to operate from block 7, and keep your procedure moder-
ately short or the machine will get upset.

Accessing the Memory Disc

There is a BIOS (not a BDOS) function No 27, called ‘SELMEM’,
which accesses the Memory Manager by adding 78 to ‘w.boot’ to
produce the address FC51h ie. (81,252), at which is found the in-
struction ‘jp FD21k’, ie. jump to the Memory Manager'. Before using
it A is loaded with the required Bank No. SELMEM is the normal
system-entry to the Memory Disc, but it is more convenient for an m/
c user to call the Memory Manager direct. (Also see page 10.)

The reason for my development of the Empirical Block-Switching ap-
proach was that difficulties naturally arose with the above technique
when I attempted to cross a block boundary with a high Bank No in
use, as may happen with an ‘Idir operation. I was under the false
impression that three new blocks came into force, so each time I
crossed the boundary I was overwriting either block 0 or block 7. 1
am grateful to Johs Lind for clarifying this, though it should have
been obvious.

END

1 98 Appendix 5

MEMORY MAP OF PRESSED KEYS

Whilst a key is being pressed this will be indicated by the fact that a
particular bit in block 3 will be set. Sixteen addresses are involved
starting at (240,191), and finishing at (255,191). For ease of location,
the table below lists the keys on the top line of the keyboard, followed
by those on the second line, etc. The entries are all in the form of two
numbers; the first is the offset counting from (240,191), and the
second is the bit number in that address. Hence the pressing of the
'STOP' key will set bit No 2 of address (248,191). The bit is reset
when the key is released (but see the note on caps Lock later).

Some keys also set bits of offsets 14 & 15 as well as their ‘individual’
bit; these I have marked with “*”. f1 & f2 also set bits of offset 12.
The spack bar sets no less than five bits (bit 4 of offsets 12, 14, and
15, and bit 5 of offset 13)!

Top line
stor 8 2 1 80 2 81 3 71
4 70 5 61 6 60 7 51
8 50 9 4 1 0 40 - 31
= 390 pEL,» 2 0 DEL- 97 can 10 2
cuT 1 2 cory 13 pastE 0 3
2nd Line
B 8 4 g 88 *w 73 *& 72
Y 62 t 63 y 5838 u 52
i 43 *o 42 *n 83 *f 32
*1 21 ReturRN 2 2 f7 10 4 AND 2 4
PAGE 1 4 raRA 0 4
3rd Line
cLock 8 6 *a 85 *s 74 *d 78
*f 65 *g 64 *h 54 *3 85
k 45 1 44 » 35 § 34
*# 2 3 RETURN 2 2 f5 100 o 05
*T 16 cHAR 0 5

Key-presses 1 99

4th Line
*surr 2 5 *z 87 tx 17 e 76
vy 67 *b 66 *n 56 *m 46
;, 47 . 37 / 36 1/2 26
*sHIFT 2 5 f3 (00 *¢ 17 *screen 07
*> 06 12 0
Bottom Line
Aacr 10 7 ExtRA 10 1. ¥ 27 *space 57
-] 10 3 prR 11 exitr 10 f1 02
Reray 0 1 *l 106 ENTER 10 5 12 1

OTHER SET BITS

The above table indicates which bits are specific to which particular keys, but
other bits also are set by various key combinations, as follows.

Offset 10: Bit 1 is set for exmrA, and Bit 7 is set for ALT.

Offset 13: Bit 7 is always set. Other bits may also be set.

Offset 14: Bit S is set for surr. Other bits may also be set.

Offset 15: Bits 6 & 7 toggle regularly and are independent of key-presses
Bit 5 is set for sHIFT.

The three ‘shift’ keys may be detected by:
surrT: Bit 5 of offsets 2, 14, & 15.
ar: Bit 7 of offset 10.
ExTRA: Bit 1 of offset 10.
While it is held down caps Lock sets bit 6 of offset 8, and additionally bit
6 of offset 13 stays set whilst in the caps Lock mode (until the key is

pressed again , or the sHIFT key is pressed).

For multiple key presses the combination of set bits is additive.

END.

200

Appendix 6

CONTENTS OF MEMORY

The contents of the memory blocks used by CP/M are briefly as follows:

Block 0 Interrupt address & ISR location
A BIOS jump block
The ‘Set-Up’ routines
Block 1 The lower part of the screen pixel data
Block 2 The upper part of the screen pixel data
The Character Matrix RAM
Roller RAM
Block 3 BIOS & BDOS routines
Key-board map
Blocks 4 to 6 Most of the TPA
Block 7 The top of the TPA plus some BIOS & BDOS
(Common Memory)
Block 8 Console Command Processor
Disc Hash Tables
Parts of BIOS
Data buffers
The printer fonts
Blocks 9 & up The Memory Disc (drive M:)
(255,255)
Bank 1 CP/M
The Addresses within bank 1, which ' & (6,246)
includes the TPA, are as indicated Loading
to the right. Prog
(128,242)
The Basic
TPA Prog
(150,122)
Basic
a ©,1)
CpM
0,0

Memory content 2 O 1

202 Appendix 7

SCREEN ADDRESSING

The connection between screen addresses and the corresponding en-
tries in Roller-Ram is indicated by the diagram on the next page.

The sequence of addresses in a print line is as indicated below:

Y
0 8 16
1 9 17
2 10 18
3 11 19
4 12 20
5 13 21
6 14 22
7 15 2
e

colm 0 colm 1 colm 2

203

Screen addresses

TUoo10S o3 0JU0 poddetd JAV -1o][0y JO SjUaju0D oy],

SHSSHIAAAV NHHUDS

RIE] (T81°00)

TON dNIT.LNIUd S +d 5 T@&c

‘ g+A+d q + d | | (818D

91+0+d 8+0O+d O+d - (T8LLL)

| v¢td+d| | 91+dHd 8+d+d d+d %_MT (T8191)

H+V T | @81

5+ Vv)

00N dNITINRId 8+I+V i+V \ | (@89

g+a+Y i+ V L~] @8y

gV | A FV \ @80

9L+g+V §HO+Y D+ V "7 @ero

voratv 9L+d+V 8+a+V qa+v @8U'D)

VoAVAY | [O1FVHY gIVHY VIV e—"1 VY [@sro
€ON TON I ON 0°N

Wwo)) ULl wIo)) JULL] W0 JuULIJ WIo)) JuLL uﬁwuﬁou wmmhﬁﬁ<

IV 44T10d

204 Appendix 8

IM 2 PROGRAMMING

Iain Stirzaker has assiduously worked through the pitfalls associated
with using the very handy im 2 interrupt mode on the PCW, and has
come up with the following way of dealing with it.

This example purposely gets itself into an endless loop consisting of
repeated jumps back to the printing of the same message. However,
by use of im 2, it allows escape from this (or any other) loop by
pressing the At key. On such enterprises it is important to make
sure that all (and I mean all) of the registers are preserved.

This demonstration program is for insertion at (0,1), as would be the
case fora COM file. Its first job is therefore to move its important bits
up into Common Memory.

0100

FOFF VBASE EQU #FOFF
VPAGE EQU #F0
BDOS EQU 5

ORG #0100
0100 Id de, VECBASE 17 255 240 Transfer
0103 Id hl, START 33 .7 8 the programming
0106 Id be, FINISH-VECBASE
1850 to higher
0109 Idir 237 176 memory

The preparation

Then it saves all the registers in sight:

010B push af 245 Save
010C push bc 197 the
010D push de 213 normal
010E push hl 229 registers
010F push ix 221 229

0111 push iy 253 229

0113 ex af, af ' 8 And

0114 exx 217 then
0115 push af 245 the
0116 push bc 197 alternates
0117 push de 213

0118 push hl 229

IM 2 program example 205

and then the stack pointer and replaces it with our home-grown vari-
ety, and then saves the address to which BDOS calls are directed.

0119 Id (OLDST),sp 237 115 156 2
011D Id sp, NEWST 49 154 2

0120 Id hl, (#0006) 42 60

0123 ld (OLDBD),hl 34 159 2

Next, BDOS calls are redirected to our ‘trap’ that will toggle the flag
that tests whether BDOS is being used:

0126 di 243
0127 Id hl, TRAP 33 136 1
012A Id (#0006), hl 34 6 0

followed by initialisation of im 2:

012D ld a, VECPAGE 62 240 High byte of vector
012F ldi,a 237 71

0131 im2 237 83

0133 el 251

Now start the endless loop:

0134 call LOOPS 205 2 161

The Recovery

The routine that handles the return to sanity (and announces the fact)
follows on from the above and so is located at (55,1). It consists of the
following;:

0137 SAFE di 243 Back to im 1
0138 im1 237 86

013A Id hl, (OLDBD) 42 159 2 Recover the normal
013D Id (#0006), hl 34 6 0 BDOS wvector
0140 e 251

0141 ld sp, (OLDST) 237 123 156 2 Original stack
0145 pop hl 225 Recover

0146 pop de 209 all

0147 pop b 193 the

0148 pop af 241 registers

0149 exx 217

206 Appendix 8

014A ex af, af ' 8

014B pop iy 253 225

014D pop ix 221 225

014F pop hl 225

0150 pop de 209

0151 pop be 193

0152 pop af 241

0153 ld de MSG 17 M M Print the

0156 idc, 9 14 9 victory

0158 call BDOS 205 5 0 message

With everything nicely under control again, the programming ends
with the usual hook for DEVPAC 80:

015B RST 0 199

The victory message at address (92,1) consists of:

015C MSG DEFB 13 10 10
015F DEFM “We have regained control - thanks
to IM2 $"

The BDOS trap

Because we are not able to come out of im 2 if the machine happens to
be processing a BDOS call, we need a flag to tell us whether such a
call is being dealt with or not. This flag task has been given to address
(158,2). If it contains a zero then we are clear to return, but if it
contains anything else (which can only be ‘255" in fact) we are not.
As indicated in Chapter 4, the ‘halt’ instruction terminates the exe-
cution of code and awaits an interrupt thereby greatly increasing the
chance of the key being detected quickly. The trap is set up by:

0188 TRAP ld a, #FF 62 255 Set flag

018A ld (FLAG), a 50 158 2

018D ld hl, (OLDBD) 42 159 2 Save BDOS jump
0190 call CALLJP 205 153 1 vector

0193 xor 4 178 Reset flag to

0194 ld (FLAG), a 50 158 2 signal BDOS end
0197 halt 118 Pause for key

0198 ret 201

0199 CALLJP jp (hD) 233

IM 2 program example 207

Addresses:

019A (154,1) DEFS 256 New stack area
029A (154,2) NEWST DEFW 2 New stack addr
029C (156,2) OLDST DEFW 2 Old stack addr
029E (158,2) FLAG DEFB 0 BDOS Flag
029F (159,2) OLDBD DEFW #0000 Old BDOS addr

The endless loop

At (161,2) is the simple loop that keeps printing the same message. It
consists of:

02A1 LOOPS Idc, 9 14 9
02A3 Id de, HAHA 17 171 2
02A6 call BDOS 205 5 0
02A9 jr LOOPS 24 246

The message at (171,2) is:

02AB HAHA DEFM “You are now in an endless loop.
To exit, hold down the ALT key”
DEFB 13 10 10 36
The ISR

The ISR is to be located at (1,241), and it will be pointed to by the
Interrupt Vector which is to be conveniently located just in front of it
at (255,240). The vector will therefore consist of the address (1,241).
The code from (255,240) upwards is the section that is pushed up into
high memory by the ‘ldir operation.

0307 START EQU $

FOFF ORG VECBASE

FOFF DEFW ISR 1 241 The interrupt vector
F101 ISR push af 245 Start of the ISR
F102 push bc 197 Save ‘em all again
F103 push de 213

F104 push hl 229

F105 push ix 221 229

F107 push iy 253 229

F109 ex af, af ’ 8

208

F10A
F10B
F10C
F10D
FI10E

F10F
F112
F113

Fi15
E117
F119
F11C
FI1E

F121
F123
F125
F126
F127
F128
E129
FI12A
F12B
F12D
F12F
F130
F131
F132
F133
F134
F135

F137
E139
F13B

F149
F14A
F14B
F14C

ESCP

GOTK

exx

push af
push bc
push de
push hl

Id a, (FLAG)
and a
jrnz ESCP

Id a, #83

out (#F2), a
ldhl, NN
bit 7 (hl)
jpnz GOTK

lda, 6
out (242), a
pop hi

pop de

pop be

pop af

exx

ex af, af ’
pop iy

pop X

pop hl

pop de

pop bc
a

rst #0038
el
reti

Ida, #86
out (#F2), a

pop hl

217
245
197
213
229

58 158 2
167
32 16

62 131

211 242

33 250 191
203 126

194 55 241

62 134
211 242
225
209

193

241
217

8

253 225
221 225
225
209

193

241

255 k%
251
237 77

62 134
211 242

(repeat from ESCP down to %%)

inc sp
inc sp
push hl

255
51
51
229

Appendix 8

BDOS flag into A
If the flag is not zero,
do not test for a key

Else switch in
block 3
And test for
the ALt key
If found goto GOTK

If not then restore
the TPA
and put
all the
registers
back
as
you
found
them

Housekeep
Re-enable
Leave the ISR

As above

Remove the im 2
return address
Save HL

IM 2 program example 209

F14D Id hl SAFE 33 55 1 Put the safe restart
F150 ex (sp), hl 227 addr onto the stack
F151 ei 251 Re-enable

F152 reti 237 77 Leave the ISR

F154 FINISH EQU §$

F154 END

This last section of code from F14A to F150 merely removes from the
stack the usual address to which the ISR would return and replaces it
by our chosen restart address, which is (65,1). The ‘reti’ therefore
causes a return to (55,1).

Operation

Everthing is now prepared. The registers have been saved, the ISR,
the test for BDOS , and the strings, etc. are in place, and im 2 isin
operation. We therefore get ourselves into an endless loop (and even
boast about it), just to prove we can get out again. The loop is
established by the code at (161,2), which just keeps printing the same
message; the one that announces that the loop has been formed.

If the aLT key is now pressed and held until it is detected during an

interrupt, the interrupt will not return to the program location at
which it originated, instead it will be redirected to address (55,1).

Assembly

The program was assembled by I Stirzaker using DEVPAC 80. The
decimal bytes were added after transcription for printing to assist di-
rect insertion into memory if required.

END

210 BOOKS

“PCW Machine Code” by Mike Keys

A good primer that sets out the principles and practice of Z80 machine
code programming. It contains many program examples that are
specific to controlling all aspects of the PCWs, both simple and ad-
vanced. Well recommended by the press and by readers.

Published: Spa Associates
Spa Croft, Clifford Road, Boston Spa, LS 23 6 DB

“Streamlined Basic” by Geoffrey Childs

An excellent description of how to get the best out of Mallard Basic.
Written specifically for PCW Basic programmers but with lots of inter-
esting m/c routines.

Published: PCW World,
Cotswold Ho, Cradley Heath, Warley, BN64 7NF

“The Amstrad CP/M Plus” by D Powys-Lybbe & A Clarke

Lots of detail on CP/M and assembly language in the PCWs, but not
very readable.

Published: MML Systems Ltd.
11 Sun Street, London, EC2M 2PS

“An Introduction to Z80 Machine Code” by R &] Penfold

An excellent booklet listing the Z80 instruction set and the effect of
each instruction on the flags. Opcodes in hex.

Published: Bernard Babarni Publishing Ltd.
Shepherds Bush Road, London, W6 7NF

BOOKS 211

212
INDEX

A

address
equivalent_
character
jump-USERF
_ranges
screen_

ADDRS

animation

arrows

B

bank
_No 1 map
_switching
bars
_mods
printer_
_repeated
BCD
BDOS
fnc 1
fnc 2
fnc 9
fnc 10
fnc 104
fnc 105
fnc 110
foe 111
eeps
BI%S
BITADR
BLEN
blocks
fitted
memory._
books
buffer tables
buffered
_keyin
_selection

182

93

11

196

78+, 87,202
119
152,159
135

69,71, 136
69,71
69,72

69, 72, 130

13

9,194, 197
210

13

124
130+

PCW Super Code

C

CALCDIG

case
_upper/lower

character
_addresses
_designin,
_information
_inversions
_large
_making
_manipulations
_rotations

CHDES

clear screen

codes
control
D

comma

COMPARE

compare
_sequences
_strings

co-ordinates

ccogngzil%ht message
CURSC

cursor
_menus
_on/off
_position
printedﬁ
_scanning
screen data_

D

decimal
_points
deletes
descenders
dis-assembly
discing screens
draft data
_fonts
drives
_facilities
~fitted

34
129

93
115
56
110
111
114
107+
108
118
143

21,70
131
60
163

163
163
87
40
140
136

124, 134+
73

14, 129
134

139

138

8
170, 171
73

54
164
148
184
52+

22+
13

Index

E

'E' shape
emphasis
equals sign

equivalent addresses

escape sequences
EVA

expansion token

F

FADDR

FASC

files

FILL

FIND

FOLIO

fonts
_bytes
draft_
_data
NLQ
redesigning
Locoscript

frills

H

halt

HANDL

help screens
housekeeping

I

im0,1,2

im 1

im 2

INIT

in-line parameter

input
number
_strings

instructions
user

61, 67

59, 65
182
70
173
19+

86
93
148
34
56
133

184+
51+, 184
46, 184
64, 188
62, 67, 68
68

123

32,48

122
37

38
39+
45+
166

11

168+
169
175

122

INTDIG
interface fitted
interrupts
_address
_modes
_register
_timer
_vector
interval timing
inverse video

inversions
character
screen_

ISR
exit_

J

jump USERF

jump table

K

ke

d _buffered

_detect
_memory map
_number
_put
_release
set

keyboard
_input

Keyin
7§uffered
_non-buffered
_routines

L

labels
changing
_data
font
redesigned

larger than

213

172
37+, 204+
39

38
45
42
45

137

110
105
39, 49
48

11
10

124, 130
15

16, 198
15

16

18

18

71

124, 130
126
15+

58

184, 185
53, 63, 65
63, 67, 68
59, 66

214

LARGE

LINE

LINE2

listing numbers

Load

loading screens
C%’ /M_

M

MABLK
machine
_config
type
makin yghars
manuals
MAX
MCHAR
memory
_banks/blocks
contents of _
_disc
_key map
_manager
menu
_cancellation
_keypress
_cursor

_single key

MESPR®

messalge printing
modular pattern
motor on/ off
movement

N

NLQ
_data
_fonts
NNLQ
NUMACC
number
decimal
_input
_listing

112
154
156
164
166
142+
144

95

13

13

114

8

177

114

9, 200, 202
10

200

145, 197
198

9, 194
121+

125

124, 126+
124, 134+
127

124

163

162

11, 84

23

152, 158

188
604

170
175

169
164

PCW Super Code

O
offsets
list of 186, 192
font_ 52, 64
_mods to 54
redesigned_ 62
OK 169
P
Fannin 102
ANL 103
PANRT 104
parameter
inline 11, 12
passwords 132, 163
pauses 30+
_timing 31
PCHK 92
picture building 152, 156
pixel 80
polite 122
ports 143, 151, 194+
print
_position 70
rintin
F _c%lumns 100
_customised 96, 124
_from table 97
_lines 99
_messages 162
sequence_ 98
printer operation 51
program technique 28,92
roportional spacing 62, 68
REIN 100
PRSEQU 99
PRTABL 97
PROOF 90
R
red-biro 8
repeat
_font bars 56

_speed 18

Index
REVBAR 138
Roller-Ram 81+, 151+, 203
RRAM 151
RRCHAR 108
rotations 107+
S
safe areas 39
SBARS 144
SCINV 105
screen
_addresses 85, 202
artificial_ 150
_blocks 94+
_clearing 143
_co-ordinates 87
_data 14, 143, 146
_environment 80, 196
_hatching 143
_inversion 105
loading 142+
_manipulations 94+
_ma 80, 146, 203
_on/off 143
_panning 102
pre-composed _ 145
_printing 69+
_re-establishing 147
reset 14
routines 14+,
_savin 146, 148
_scrolling 101
size of 14
_speckling 157
Screen Run Routine 14, 84
scrolling 101
SCRUP 101
set
_expand 19
_key 18
_time 29
set-u 9+
SHO 58
speckling 157
SRES 152
SSINV 110
stack 10, 79

status line
_ask/set

STORE

string printing

syntax

T

TBINV

text control

time

TIMER

timing
recise_

TOD block

tokens

_table
TPA
truth table

U

underlining

USERF

A%

version number

W
WCLS

280

215

83
14
147
72

110
70
24+
34

42

25

19+

20

10, 78, 200
170

73
10, 93

13

143

"PCW

SUPER
Code”

The second
best book on
programming
the PCW.

Loading screens O Machinedefinition O Interrupttechniques O Pause
generation O Stop-watch & interval timing O Draft and NLQ printer
fonts O All printer font data, with tips on re-design O Advanced screen
printing & screen addressing O Screen manipulations : scrolling,
panning, inversions, etc. O Character inversions, rotations, enlargements,
etc. O Customised printing 0 All forms of menus 0 Block
switching and other useful techniques, etc., etc.,

¢ DOZENS OF PROGRAM EXAMPLES
¢ Full INDEX and APPENDICES

** The whole book is a gold mine of information. It stands out as an example that
programming does not have to be be dull, boring, or confusing. The author talks
about machine code as if it is no more complicated than drawing up a shopping
list, and his readers will believe him. ”’

Amstrad PCW Magazine
May 1990

u||
l|‘

|l|!

i

il
|

li
il

£13.95 nett

ISBN 1 871892 01 5

i
|
Il

< il
i
o il

>
¥
.
>

BN

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222

